441 research outputs found

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica.Postprint (published version

    The Determination of Surface Salinity with the European SMOS Space Mission

    Get PDF
    The European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission aims at obtaining global maps of soil moisture and sea surface salinity from space for large-scale and climatic studies. It uses an L-band (1400–1427 MHz) Microwave Interferometric Radiometer by Aperture Synthesis to measure brightness temperature of the earth’s surface at horizontal and vertical polarizations ( h and v). These two parameters will be used together to retrieve the geophysical parameters. The retrieval of salinity is a complex process that requires the knowledge of other environmental information and an accurate processing of the radiometer measurements. Here, we present recent results obtained from several studies and field experiments that were part of the SMOS mission, and highlight the issues still to be solved

    Using SMOS and Sentinel 3 satellite data to obtain high resolution soil moisture maps

    Get PDF
    Surface soil moisture is a critical climate variable and strongly influences water and energy cycles at the surface-atmosphere interface. It is widely used to improve numerical climate and weather models, rainfall and drough estimation, vegetation monitoring, among others. Traditionally, there were two main ways to retrieve soil moisture data. On one hand, soil moisture sensors networks placed and maintained in situ to obtain long term distributed measurements, which is expensive and time-consuming. On the other hand, soil moisture data could be obtained by using numerical model products combined with ground observations. But, in both cases, the data resolution provided was not enough to characterize soil moisture at large scale. Nowadays, microwave remote sensing allows the global monitoring of soil moisture. SMOS (Soil Moisture and Ocean Salinity) mission, launched in 2009, was the first mission with this objective and providing an acceptable spatial resolution. It aims to monitor soil moisture over land surfaces, surface salinity over the oceans, and surfaces covered by snow and ice, by performing microwave radiometric measurements at L-band, characterized by being unaffected by cloud cover and variable surface solar illumination. The SMOS soil moisture data has a spatial resolution of 35-50 km, which is enough for global applications. But, local applications such as hydrological, fire prevention, agricultural and water management, require higher soil moisture resolution. In order to cover this necessity, several downscaling methodologies have been developed to improve the spatial resolution. The Department of Signal Theory in the UPC developed a downscaling algorithm based on the synergistic usage of low resolution soil moisture map and data provided by other satellites, that computed soil moisture maps at 1 km resolution (Maria Piles, 2010 [32]). This algorithm combines the SMOS soil moisture with NDVI and LST measurements from Aqua and Terra missions obtained by MODIS instrument. Later, this algorithm was improved by using an adaptive sliding window, which is the version we will use in this project (Gerard Portal, 2017 [24]). The aim of this project is to substitute the NDVI and LST measurements from MODIS used as ancillary data in the downscaling algorithm by the ones provided by Sentinel 3, comparing its differences and the variation of the high resolution soil moisture maps (SM HR maps) obtained. Also, it will include the evaluation of the data download and preparation process workflow

    Sun effects in 2D aperture synthesis radiometry imaging and their cancellation

    Get PDF
    The Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) is the single payload of the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity mission. MIRAS will be the first two-dimensional aperture synthesis radiometer for earth observation. Two-dimensional aperture synthesis radiometers can generate brightness temperature images by a Fourier synthesis process without mechanical antenna steering. To do so and have the necessary wide swath for earth observation, the array is formed by small and low directive antennas, which do not attenuate enough bright noise sources that may interfere with the measurements. This study analyzes the impact of the radio-frequency emission from the sun in the SMOS mission, reviews the basic image reconstruction algorithms, and proposes a technique to minimize sun effects.Postprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Revisiting the global patterns of seasonal cycle in sea surface salinity

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016789, https://doi.org/10.1029/2020JC016789.Argo profiling floats and L-band passive microwave remote sensing have significantly improved the global sampling of sea surface salinity (SSS) in the past 15 years, allowing the study of the range of SSS seasonal variability using concurrent satellite and in situ platforms. Here, harmonic analysis was applied to four 0.25° satellite products and two 1° in situ products between 2016 and 2018 to determine seasonal harmonic patterns. The 0.25° World Ocean Atlas (WOA) version 2018 was referenced to help assess the harmonic patterns from a long-term perspective based on the 3-year period. The results show that annual harmonic is the most characteristic signal of the seasonal cycle, and semiannual harmonic is important in regions influenced by monsoon and major rivers. The percentage of the observed variance that can be explained by harmonic modes varies with products, with values ranging between 50% and 72% for annual harmonic and between 15% and 19% for semiannual harmonic. The large spread in the explained variance by the annual harmonic reflects the large disparity in nonseasonal variance (or noise) in the different products. Satellite products are capable of capturing sharp SSS features on meso- and frontal scales and the patterns agree well with the WOA 2018. These products are, however, subject to the impacts of radiometric noises and are algorithm dependent. The coarser-resolution in situ products may underrepresent the full range of high-frequency small scale SSS variability when data record is short, which may have enlarged the explained SSS variance by the annual harmonic.L. Yu was funded by NASA Ocean Salinity Science Team (OSST) activities through Grant 80NSSC18K1335. FMB was funded by the NASA OSST through Grant 80NSSC18K1322. E. P. Dinnat was funded by NASA through Grant 80NSSC18K1443. This research is carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.2021-09-1

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe
    corecore