4,188 research outputs found

    Road Tracking from High resolution IRS And IKONOS Images Using Unscented Kalman Filtering

    Get PDF
    A typical way to update map is to compare recent satellite images with existing map data, detect new roads and add them as cartographic entities to the road layer. At present image processing and pattern recognition are not robust enough to automate the image interpretation system feasible. For this reason we have to develop an image interpretation system that rely on human guidance. More importantly road maps require final checking by a human due to the legal implementations of error. Our proposed technique is applied to IRS and IKONOS images using Unscented Kalman Filter(UKF) . UKF is used for tracing the median axis of the single road segment. The Extended Kalman Filter (EKF) is probably the most widely used estimation algorithm for road tracking. However, more than 35 years of experience in the estimation community has shown that is difficult to implement and is difficult to tune. To overcome this limitation,UKF is introduced in road tracking which is more accurate, easier to implement, and uses the same order of calculations as linearization. The principles and algorithm of EKF and UKF were also discussed. The core of our system is based on profile matching.UKF traces the roadbeyond obstacles and tries to find the continuation of the road finding all road branches initializing at the road junction.The completeness and correctness of road tracking from the IRS and IKONOS images were also compared

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Vision-based traffic surveys in urban environments

    Get PDF
    This paper presents a state-of-the-art, vision-based vehicle detection and type classification to perform traffic surveys from a roadside closed-circuit television camera. Vehicles are detected using background subtraction based on a Gaussian mixture model that can cope with vehicles that become stationary over a significant period of time. Vehicle silhouettes are described using a combination of shape and appearance features using an intensity-based pyramid histogram of orientation gradients (HOG). Classification is performed using a support vector machine, which is trained on a small set of hand-labeled silhouette exemplars. These exemplars are identified using a model-based preclassifier that utilizes calibrated images mapped by Google Earth to provide accurately surveyed scene geometry matched to visible image landmarks. Kalman filters track the vehicles to enable classification by majority voting over several consecutive frames. The system counts vehicles and separates them into four categories: car, van, bus, and motorcycle (including bicycles). Experiments with real-world data have been undertaken to evaluate system performance and vehicle detection rates of 96.45% and classification accuracy of 95.70% have been achieved on this data.The authors gratefully acknowledge the Royal Borough of Kingston for providing the video data. S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement nº 600371, el Ministerio de Economía y Competitividad (COFUND2013-51509) and Banco Santander

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Deep Learning Assisted Intelligent Visual and Vehicle Tracking Systems

    Get PDF
    Sensor fusion and tracking is the ability to bring together measurements from multiple sensors of the current and past time to estimate the current state of a system. The resulting state estimate is more accurate compared with the direct sensor measurement because it balances between the state prediction based on the assumed motion model and the noisy sensor measurement. Systems can then use the information provided by the sensor fusion and tracking process to support more-intelligent actions and achieve autonomy in a system like an autonomous vehicle. In the past, widely used sensor data are structured, which can be directly used in the tracking system, e.g., distance, temperature, acceleration, and force. The measurements\u27 uncertainty can be estimated from experiments. However, currently, a large number of unstructured data sources can be generated from sensors such as cameras and LiDAR sensors, which bring new challenges to the fusion and tracking system. The traditional algorithm cannot directly use these unstructured data, and it needs another method or process to “understand” them first. For example, if a system tries to track a particular person in a video sequence, it needs to understand where the person is in the first place. However, the traditional tracking method cannot finish such a task. The measurement model for unstructured data is usually difficult to construct. Deep learning techniques provide promising solutions to this type of problem. A deep learning method can learn and understand the unstructured data to accomplish tasks such as object detection in images, object localization in LiDAR point clouds, and driver behavior prediction from the current traffic conditions. Deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, audio recognition, social network filtering, and machine translation, where they have produced results comparable with human expert performance. How to incorporate information obtained via deep learning into our tracking system is one of the topics of this dissertation. Another challenging task is using learning methods to improve a tracking filter\u27s performance. In a tracking system, many manually tuned system parameters affect the tracking performance, e.g., the process noise covariance and measurement noise covariance in a Kalman Filter (KF). These parameters used to be estimated by running the tracking algorithm several times and selecting the one that gives the optimal performance. How to learn the system parameters automatically from data, and how to use machine learning techniques directly to provide useful information to the tracking systems are critical to the proposed tracking system. The proposed research on the intelligent tracking system has two objectives. The first objective is to make a visual tracking filter smart enough to understand unstructured data sources. The second objective is to apply learning algorithms to improve a tracking filter\u27s performance. The goal is to develop an intelligent tracking system that can understand the unstructured data and use the data to improve itself
    • …
    corecore