402 research outputs found

    Context for goal-level product line derivation

    Get PDF
    Product line engineering aims at developing a family of products and facilitating the derivation of product variants from it. Context can be a main factor in determining what products to derive. Yet, there is gap in incorporating context with variability models. We advocate that, in the first place, variability originates from human intentions and choices even before software systems are constructed, and context influences variability at this intentional level before the functional one. Thus, we propose to analyze variability at an early phase of analysis adopting the intentional ontology of goal models, and studying how context can influence such variability. Below we present a classification of variation points on goal models, analyze their relation with context, and show the process of constructing and maintaining the models. Our approach is illustrated with an example of a smarthome for people with dementia problems. 1

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding users’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud users’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    Modeling and analyzing variability for mobile information systems

    Get PDF
    Abstract. Advances in size, power, and ubiquity of computing, sensors, and communication technology made possible the development of mobile or nomadic information systems. Variability of location and system behavior is a central issue in mobile information systems, where behavior of software has to change and re-adapt to the different location settings. This paper concerns modeling and analysis of the complementary relation between software and location variability. We use graphical and formal location modeling techniques, show how to elicit and use location model in conjunction with Tropos goal-oriented framework, and introduce automated analysis on the location-based models.

    Goal-based self-contextualization

    Get PDF
    Abstract. System self-contextualizability is the system ability to autonomously adapt its behavior to the uncontrollable relevant context to keep its objectives satisfied. Self-contextualizable system must have alternative behaviors each fitting to a set of contexts. We propose to start considering context at the level of requirements engineering, adopting Tropos goal model to express requirements and complementing it with our proposed context analysis. We define variation points on goal model where a context-based decision might need to be taken, and propose constructs to analyze context. While goal analysis provides constructs to hierarchically analyze goals and discover alternative sets of tasks to be executed to satisfy a goal, our proposed context analysis provides constructs to hierarchically analyze context and discover alternative sets of facts to be monitored to verify a context.

    Goal-oriented requirements engineering: an extended systematic mapping study.

    Get PDF
    Over the last two decades, much attention has been paid to the area of goal-oriented requirements engineering (GORE), where goals are used as a useful conceptualization to elicit, model, and analyze requirements, capturing alternatives and conflicts. Goal modeling has been adapted and applied to many sub-topics within requirements engineering (RE) and beyond, such as agent orientation, aspect orientation, business intelligence, model-driven development, and security. Despite extensive efforts in this field, the RE community lacks a recent, general systematic literature review of the area. In this work, we present a systematic mapping study, covering the 246 top-cited GORE-related conference and journal papers, according to Scopus. Our literature map addresses several research questions: we classify the types of papers (e.g., proposals, formalizations, meta-studies), look at the presence of evaluation, the topics covered (e.g., security, agents, scenarios), frameworks used, venues, citations, author networks, and overall publication numbers. For most questions, we evaluate trends over time. Our findings show a proliferation of papers with new ideas and few citations, with a small number of authors and papers dominating citations; however, there is a slight rise in papers which build upon past work (implementations, integrations, and extensions). We see a rise in papers concerning adaptation/variability/evolution and a slight rise in case studies. Overall, interest in GORE has increased. We use our analysis results to make recommendations concerning future GORE research and make our data publicly available

    Goal-Oriented Requirements Engineering: State of the Art and Research Trend

    Get PDF
    The Goal-Oriented Requirements Engineering (GORE) is one approach that is widely used for the early stages of software development. This method continues to develop in the last three decades. In this paper, a literature study is conducted to determine the GORE state of the art. The study begins with a Systematic Literature Review (SLR) was conducted to determine the research trend in the last five years. This study reviewed 126 papers published from 2016 to 2020.  The research continues with the author's search for scientific articles about GORE. There are 26 authors who actively publish GORE research results. Twenty-six authors were grouped into seven groups based on their relation or co-authoring scientific articles. An in-depth study of each group resulted in a holistic mapping of GORE research.  Based on the analysis, it is known that most research focuses on improving GORE for an automated and reliable RE process, developing new models/frameworks/methods originating from GORE, and implementing GORE for the RE process. This paper contributes to a holistic mapping of the GORE approach. Through this study, it is known the various studies that are being carried out and research opportunities to increase automation in the entire RE process
    • 

    corecore