98,562 research outputs found

    Heart Beat Characterization from Ballistocardiogram Signals using Extended Functions of Multiple Instances

    Full text link
    A multiple instance learning (MIL) method, extended Function of Multiple Instances (eeFUMI), is applied to ballistocardiogram (BCG) signals produced by a hydraulic bed sensor. The goal of this approach is to learn a personalized heartbeat "concept" for an individual. This heartbeat concept is a prototype (or "signature") that characterizes the heartbeat pattern for an individual in ballistocardiogram data. The eeFUMI method models the problem of learning a heartbeat concept from a BCG signal as a MIL problem. This approach elegantly addresses the uncertainty inherent in a BCG signal e. g., misalignment between training data and ground truth, mis-collection of heartbeat by some transducers, etc. Given a BCG training signal coupled with a ground truth signal (e.g., a pulse finger sensor), training "bags" labeled with only binary labels denoting if a training bag contains a heartbeat signal or not can be generated. Then, using these bags, eeFUMI learns a personalized concept of heartbeat for a subject as well as several non-heartbeat background concepts. After learning the heartbeat concept, heartbeat detection and heart rate estimation can be applied to test data. Experimental results show that the estimated heartbeat concept found by eeFUMI is more representative and a more discriminative prototype of the heartbeat signals than those found by comparison MIL methods in the literature.Comment: IEEE EMBC 2016, pp. 1-

    Mapping-equivalence and oid-equivalence of single-function object-creating conjunctive queries

    Full text link
    Conjunctive database queries have been extended with a mechanism for object creation to capture important applications such as data exchange, data integration, and ontology-based data access. Object creation generates new object identifiers in the result, that do not belong to the set of constants in the source database. The new object identifiers can be also seen as Skolem terms. Hence, object-creating conjunctive queries can also be regarded as restricted second-order tuple-generating dependencies (SO tgds), considered in the data exchange literature. In this paper, we focus on the class of single-function object-creating conjunctive queries, or sifo CQs for short. We give a new characterization for oid-equivalence of sifo CQs that is simpler than the one given by Hull and Yoshikawa and places the problem in the complexity class NP. Our characterization is based on Cohen's equivalence notions for conjunctive queries with multiplicities. We also solve the logical entailment problem for sifo CQs, showing that also this problem belongs to NP. Results by Pichler et al. have shown that logical equivalence for more general classes of SO tgds is either undecidable or decidable with as yet unknown complexity upper bounds.Comment: This revised version has been accepted on 11 January 2016 for publication in The VLDB Journa

    Memory and Parallelism Analysis Using a Platform-Independent Approach

    Full text link
    Emerging computing architectures such as near-memory computing (NMC) promise improved performance for applications by reducing the data movement between CPU and memory. However, detecting such applications is not a trivial task. In this ongoing work, we extend the state-of-the-art platform-independent software analysis tool with NMC related metrics such as memory entropy, spatial locality, data-level, and basic-block-level parallelism. These metrics help to identify the applications more suitable for NMC architectures.Comment: 22nd ACM International Workshop on Software and Compilers for Embedded Systems (SCOPES '19), May 201
    • …
    corecore