18,423 research outputs found

    Data-driven approximations of dynamical systems operators for control

    Full text link
    The Koopman and Perron Frobenius transport operators are fundamentally changing how we approach dynamical systems, providing linear representations for even strongly nonlinear dynamics. Although there is tremendous potential benefit of such a linear representation for estimation and control, transport operators are infinite-dimensional, making them difficult to work with numerically. Obtaining low-dimensional matrix approximations of these operators is paramount for applications, and the dynamic mode decomposition has quickly become a standard numerical algorithm to approximate the Koopman operator. Related methods have seen rapid development, due to a combination of an increasing abundance of data and the extensibility of DMD based on its simple framing in terms of linear algebra. In this chapter, we review key innovations in the data-driven characterization of transport operators for control, providing a high-level and unified perspective. We emphasize important recent developments around sparsity and control, and discuss emerging methods in big data and machine learning.Comment: 37 pages, 4 figure

    When Machine Learning Meets Big Data: A Wireless Communication Perspective

    Full text link
    We have witnessed an exponential growth in commercial data services, which has lead to the 'big data era'. Machine learning, as one of the most promising artificial intelligence tools of analyzing the deluge of data, has been invoked in many research areas both in academia and industry. The aim of this article is twin-fold. Firstly, we briefly review big data analysis and machine learning, along with their potential applications in next-generation wireless networks. The second goal is to invoke big data analysis to predict the requirements of mobile users and to exploit it for improving the performance of "social network-aware wireless". More particularly, a unified big data aided machine learning framework is proposed, which consists of feature extraction, data modeling and prediction/online refinement. The main benefits of the proposed framework are that by relying on big data which reflects both the spectral and other challenging requirements of the users, we can refine the motivation, problem formulations and methodology of powerful machine learning algorithms in the context of wireless networks. In order to characterize the efficiency of the proposed framework, a pair of intelligent practical applications are provided as case studies: 1) To predict the positioning of drone-mounted areal base stations (BSs) according to the specific tele-traffic requirements by gleaning valuable data from social networks. 2) To predict the content caching requirements of BSs according to the users' preferences by mining data from social networks. Finally, open research opportunities are identified for motivating future investigations.Comment: This article has been accepted by IEEE Vehicular Technology Magazin

    Institutional Metaphors for Designing Large-Scale Distributed AI versus AI Techniques for Running Institutions

    Full text link
    Artificial Intelligence (AI) started out with an ambition to reproduce the human mind, but, as the sheer scale of that ambition became apparent, quickly retreated into either studying specialized intelligent behaviours, or proposing overarching architectural concepts for interfacing specialized intelligent behaviour components, conceived of as agents in a kind of organization. This agent-based modeling paradigm, in turn, proves to have interesting applications in understanding, simulating, and predicting the behaviour of social and legal structures on an aggregate level. This chapter examines a number of relevant cross-cutting concerns, conceptualizations, modeling problems and design challenges in large-scale distributed Artificial Intelligence, as well as in institutional systems, and identifies potential grounds for novel advances.Comment: invited chapter, before proofrea

    Network of Bandits insure Privacy of end-users

    Full text link
    In order to distribute the best arm identification task as close as possible to the user's devices, on the edge of the Radio Access Network, we propose a new problem setting, where distributed players collaborate to find the best arm. This architecture guarantees privacy to end-users since no events are stored. The only thing that can be observed by an adversary through the core network is aggregated information across users. We provide a first algorithm, Distributed Median Elimination, which is optimal in term of number of transmitted bits and near optimal in term of speed-up factor with respect to an optimal algorithm run independently on each player. In practice, this first algorithm cannot handle the trade-off between the communication cost and the speed-up factor, and requires some knowledge about the distribution of players. Extended Distributed Median Elimination overcomes these limitations, by playing in parallel different instances of Distributed Median Elimination and selecting the best one. Experiments illustrate and complete the analysis. According to the analysis, in comparison to Median Elimination performed on each player, the proposed algorithm shows significant practical improvements

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    A Survey on Matrix Completion: Perspective of Signal Processing

    Full text link
    Matrix completion (MC) is a promising technique which is able to recover an intact matrix with low-rank property from sub-sampled/incomplete data. Its application varies from computer vision, signal processing to wireless network, and thereby receives much attention in the past several years. There are plenty of works addressing the behaviors and applications of MC methodologies. This work provides a comprehensive review for MC approaches from the perspective of signal processing. In particular, the MC problem is first grouped into six optimization problems to help readers understand MC algorithms. Next, four representative types of optimization algorithms solving the MC problem are reviewed. Ultimately, three different application fields of MC are described and evaluated.Comment: 12 pages, 9 figure

    Software tools for the cognitive development of autonomous robots

    Get PDF
    Robotic systems are evolving towards higher degrees of autonomy. This paper reviews the cognitive tools available nowadays for the fulfilment of abstract or long-term goals as well as for learning and modifying their behaviour.Peer ReviewedPostprint (author's final draft

    Matters of Gravity, the newsletter of the APS Topical Group on Gravitation, Fall 2002

    Full text link
    Contents: * Community news: Einstein prize update, by Clifford Will World year of physics, by Richard H. Price We hear that... by Jorge Pullin * Research briefs: R-mode epitaph? by John Friedman and Nils Andersson Gravitational waves from bumpy neutron stars, by Ben Owen LIGO science operations begin!, by Gary Sanders * Conference reports: Fourth international LISA symposium, by Peter Bender Initial Data for Binary Systems, by Gregory Cook Report on Joint LSC/Source Modeling Meeting, by Patrick Brady Greek Relativity Conference, NEB-X by Kostas Kokkotas and Nick Stergioulas Gravity, Astrophysics, and Strings @ the Black Sea, by Plamen Fiziev Quantum field theory at ESI, by Robert Wald School on quantum gravity in Chile, by Don Marolf Apples with apples workshop, by Miguel Alcubierre Radiation reaction focus session and 5th Capra meeting, by Eanna Flanagan Numerical Relativity Workshop at IMA, by Manuel TiglioComment: 37 pages, LaTeX with html.sty and psfig, 2 figures. Jorge Pullin (editor). PDF and html versions in http://www.phys.lsu.edu/mo

    Progress in AI Planning Research and Applications

    Get PDF
    Planning has made significant progress since its inception in the 1970s, in terms both of the efficiency and sophistication of its algorithms and representations and its potential for application to real problems. In this paper we sketch the foundations of planning as a sub-field of Artificial Intelligence and the history of its development over the past three decades. Then some of the recent achievements within the field are discussed and provided some experimental data demonstrating the progress that has been made in the application of general planners to realistic and complex problems. The paper concludes by identifying some of the open issues that remain as important challenges for future research in planning
    • ā€¦
    corecore