90 research outputs found

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Moving Object Detection based on RGBD Information

    Get PDF
    This thesis is targeting the Moving Object Detection topic, more specifically, the Background Subtraction. In this study, we proposed two approaches using color and depth information to solve the background subtraction. The following two paragraphs will give a brief abstract for each approach. In this research study, we propose a framework for improving traditional Background Subtraction techniques. This framework is based on two data types: color and depth; it stands for obtaining preliminary results of the background segmentation using Depth and RGB channels independently, then using an algorithm to fuse them to create the final results. The experiments on the SBM-RGBD dataset using four methods: ViBe, LOBSTER, SuBSENSE, and PAWCS, proved that the proposed framework achieves an impressive performance compared to the original RGB-based techniques from the state-of-the-art. This dissertation also proposes a novel deep learning model called Deep Multi-Scale Network (DMSN) for Background Subtraction. This convolutional neural network is built to use RGB color channels and Depth maps as inputs with which it can fuse semantic and spatial information. Compared with previous Deep Learning Background Subtraction techniques that lack information due to their use of only RGB channels, our RGBD version can overcome most of the drawbacks, especially in some particular challenges. Further, this study introduces a new protocol for the SBM-RGBD dataset regarding scene-independent evaluation, dedicated to Deep Learning methods to set up a competitive platform that includes more challenging situations. The proposed method proved its efficiency in solving the background subtraction in complex problems at different levels. The experimental results verify that the proposed work outperforms the state-of-the-art on SBM-RGBD and GSM datasets

    Segmentation mutuelle d'objets d'intĂ©rĂȘt dans des sĂ©quences d'images stĂ©rĂ©o multispectrales

    Get PDF
    Les systĂšmes de vidĂ©osurveillance automatisĂ©s actuellement dĂ©ployĂ©s dans le monde sont encore bien loin de ceux qui sont reprĂ©sentĂ©s depuis des annĂ©es dans les oeuvres de sciencefiction. Une des raisons derriĂšre ce retard de dĂ©veloppement est le manque d’outils de bas niveau permettant de traiter les donnĂ©es brutes captĂ©es sur le terrain. Le prĂ©-traitement de ces donnĂ©es sert Ă  rĂ©duire la quantitĂ© d’information qui transige vers des serveurs centralisĂ©s, qui eux effectuent l’interprĂ©tation complĂšte du contenu visuel captĂ©. L’identification d’objets d’intĂ©rĂȘt dans les images brutes Ă  partir de leur mouvement est un exemple de prĂ©-traitement qui peut ĂȘtre rĂ©alisĂ©. Toutefois, dans un contexte de vidĂ©osurveillance, une mĂ©thode de prĂ©-traitement ne peut gĂ©nĂ©ralement pas se fier Ă  un modĂšle d’apparence ou de forme qui caractĂ©rise ces objets, car leur nature exacte n’est pas connue d’avance. Cela complique donc l’élaboration des mĂ©thodes de traitement de bas niveau. Dans cette thĂšse, nous prĂ©sentons diffĂ©rentes mĂ©thodes permettant de dĂ©tecter et de segmenter des objets d’intĂ©rĂȘt Ă  partir de sĂ©quences vidĂ©o de maniĂšre complĂštement automatisĂ©e. Nous explorons d’abord les approches de segmentation vidĂ©o monoculaire par soustraction d’arriĂšre-plan. Ces approches se basent sur l’idĂ©e que l’arriĂšre-plan d’une scĂšne peut ĂȘtre modĂ©lisĂ© au fil du temps, et que toute variation importante d’apparence non prĂ©dite par le modĂšle dĂ©voile en fait la prĂ©sence d’un objet en intrusion. Le principal dĂ©fi devant ĂȘtre relevĂ© par ce type de mĂ©thode est que leur modĂšle d’arriĂšre-plan doit pouvoir s’adapter aux changements dynamiques des conditions d’observation de la scĂšne. La mĂ©thode conçue doit aussi pouvoir rester sensible Ă  l’apparition de nouveaux objets d’intĂ©rĂȘt, malgrĂ© cette robustesse accrue aux comportements dynamiques prĂ©visibles. Nous proposons deux mĂ©thodes introduisant diffĂ©rentes techniques de modĂ©lisation qui permettent de mieux caractĂ©riser l’apparence de l’arriĂšre-plan sans que le modĂšle soit affectĂ© par les changements d’illumination, et qui analysent la persistance locale de l’arriĂšre-plan afin de mieux dĂ©tecter les objets d’intĂ©rĂȘt temporairement immobilisĂ©s. Nous introduisons aussi de nouveaux mĂ©canismes de rĂ©troaction servant Ă  ajuster les hyperparamĂštres de nos mĂ©thodes en fonction du dynamisme observĂ© de la scĂšne et de la qualitĂ© des rĂ©sultats produits.----------ABSTRACT: The automated video surveillance systems currently deployed around the world are still quite far in terms of capabilities from the ones that have inspired countless science fiction works over the past few years. One of the reasons behind this lag in development is the lack of lowlevel tools that allow raw image data to be processed directly in the field. This preprocessing is used to reduce the amount of information transferred to centralized servers that have to interpret the captured visual content for further use. The identification of objects of interest in raw images based on motion is an example of a reprocessing step that might be required by a large system. However, in a surveillance context, the preprocessing method can seldom rely on an appearance or shape model to recognize these objects since their exact nature cannot be known exactly in advance. This complicates the elaboration of low-level image processing methods. In this thesis, we present different methods that detect and segment objects of interest from video sequences in a fully unsupervised fashion. We first explore monocular video segmentation approaches based on background subtraction. These approaches are based on the idea that the background of an observed scene can be modeled over time, and that any drastic variation in appearance that is not predicted by the model actually reveals the presence of an intruding object. The main challenge that must be met by background subtraction methods is that their model should be able to adapt to dynamic changes in scene conditions. The designed methods must also remain sensitive to the emergence of new objects of interest despite this increased robustness to predictable dynamic scene behaviors. We propose two methods that introduce different modeling techniques to improve background appearance description in an illumination-invariant way, and that analyze local background persistence to improve the detection of temporarily stationary objects. We also introduce new feedback mechanisms used to adjust the hyperparameters of our methods based on the observed dynamics of the scene and the quality of the generated output

    A robust framework for medical image segmentation through adaptable class-specific representation

    Get PDF
    Medical image segmentation is an increasingly important component in virtual pathology, diagnostic imaging and computer-assisted surgery. Better hardware for image acquisition and a variety of advanced visualisation methods have paved the way for the development of computer based tools for medical image analysis and interpretation. The routine use of medical imaging scans of multiple modalities has been growing over the last decades and data sets such as the Visible Human Project have introduced a new modality in the form of colour cryo section data. These developments have given rise to an increasing need for better automatic and semiautomatic segmentation methods. The work presented in this thesis concerns the development of a new framework for robust semi-automatic segmentation of medical imaging data of multiple modalities. Following the specification of a set of conceptual and technical requirements, the framework known as ACSR (Adaptable Class-Specific Representation) is developed in the first case for 2D colour cryo section segmentation. This is achieved through the development of a novel algorithm for adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path Growing Algorithm), combined with Learning Vector Quantization. The framework is extended to accommodate 3D volume segmentation of cryo section data and subsequently segmentation of single and multi-channel greyscale MRl data. For the latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is based on comparison with previously published results on standard simulated and real data sets, using visual presentation, ground truth comparison and human observer experiments. ACSR provides the user with a simple and intuitive visual initialisation process followed by a fully automatic segmentation. Results on both cryo section and MRI data compare favourably to existing methods, demonstrating robustness both to common artefacts and multiple user initialisations. Further developments into specific clinical applications are discussed in the future work section

    Image Compression Techniques: A Survey in Lossless and Lossy algorithms

    Get PDF
    The bandwidth of the communication networks has been increased continuously as results of technological advances. However, the introduction of new services and the expansion of the existing ones have resulted in even higher demand for the bandwidth. This explains the many efforts currently being invested in the area of data compression. The primary goal of these works is to develop techniques of coding information sources such as speech, image and video to reduce the number of bits required to represent a source without significantly degrading its quality. With the large increase in the generation of digital image data, there has been a correspondingly large increase in research activity in the field of image compression. The goal is to represent an image in the fewest number of bits without losing the essential information content within. Images carry three main type of information: redundant, irrelevant, and useful. Redundant information is the deterministic part of the information, which can be reproduced without loss from other information contained in the image. Irrelevant information is the part of information that has enormous details, which are beyond the limit of perceptual significance (i.e., psychovisual redundancy). Useful information, on the other hand, is the part of information, which is neither redundant nor irrelevant. Human usually observes decompressed images. Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual System. This paper provides a survey on various image compression techniques, their limitations, compression rates and highlights current research in medical image compression

    Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    Get PDF
    Due to the general shift from conventional warfare to terrorism and urban warfare by enemies of the United States in the late 20th Century, locating and tracking individuals of interest have become critically important. Dismount detection and tracking are vital to provide security and intelligence in both combat and homeland defense scenarios including base defense, combat search and rescue (CSAR), and border patrol. This thesis focuses on exploiting recent advances in skin detection research to reliably detect dismounts in a scene. To this end, a signal-plus-noise model is developed to map modeled skin spectra to the imaging response of an arbitrary sensor, enabling an in-depth exploration of multispectral features as they are encountered in the real world for improved skin detection. Knowledge of skin locations within an image is exploited to cue a robust dismount detection algorithm, significantly improving dismount detection performance and efficiency. This research explores multiple spectral features and detection algorithms to find the best features and algorithms for detecting skin in multispectral visible and short wave infrared (SWIR) imagery. This study concludes that using SWIR imagery for skin detection and color information for false alarm suppression results in 95% probability of skin detection at a false alarm rate of only 0.4%. Skin detections are utilized to cue a dismount detector based on histograms of oriented gradients. This technique reduces the search space by nearly 3 orders of magnitude compared to searching an entire image, while reducing the average number of false positives per image by nearly 2 orders of magnitude at 95% probability of dismount detection. The skin-detection-cued dismount detector developed in this thesis has the potential to make significant contribution to the United States Air Force human measurement and signature intelligence and CSAR missions

    Computer vision models in surveillance robotics

    Get PDF
    2009/2010In questa Tesi, abbiamo sviluppato algoritmi che usano l’informazione visiva per eseguire, in tempo reale, individuazione, riconoscimento e classificazione di oggetti in movimento, indipendentemente dalle condizioni ambientali e con l’accurattezza migliore. A tal fine, abbiamo sviluppato diversi concetti di visione artificial, cioù l'identificazione degli oggetti di interesse in tutta la scena visiva (monoculare o stereo), e la loro classificazione. Nel corso della ricerca, sono stati provati diversi approcci, inclusa l’individuazione di possibili candidati tramite la segmentazione di immagini con classificatori deboli e centroidi, algoritmi per la segmentazione di immagini rafforzate tramite informazioni stereo e riduzione del rumore, combinazione di popolari caratteristiche quali quelle invarianti a fattori di scala (SIFT) combinate con informazioni di distanza. Abbiamo sviluppato due grandi categorie di soluzioni associate al tipo di sistema usato. Con camera mobile, abbiamo favorito l’individuazione di oggetti conosciuti tramite scansione dell’immagine; con camera fissa abbiamo anche utilizzato algoritmi per l’individuazione degli oggetti in primo piano ed in movimento (foreground detection). Nel caso di “foreground detection”, il tasso di individuazione e classificazione aumenta se la qualita’ degli oggetti estratti e’ alta. Noi proponiamo metodi per ridurre gli effetti dell’ombra, illuminazione e movimenti ripetitivi prodotti dagli oggetti in movimento. Un aspetto importante studiato e’ la possibilita’ di usare algoritmi per l’individuazione di oggetti in movimento tramite camera mobile. Soluzioni efficienti stanno diventando sempre piu’ complesse, ma anche gli strumenti di calcolo per elaborare gli algoritmi sono piu’ potenti e negli anni recenti, le architetture delle schede video (GPU) offrono un grande potenziale. Abbiamo proposto una soluzione per architettura GPU di una gestione delle immagini di sfondo, al fine di aumentare le prestazioni di individuazione. In questa Tesi abbiamo studiato l’individuazione ed inseguimento di persone for applicazioni come la prevenzione di situazione di rischio (attraversamento delle strade), e conteggio per l’analisi del traffico. Noi abbiamo studiato questi problemi ed esplorato vari aspetti dell’individuazione delle persone, gruppi ed individuazione in scenari affollati. Comunque, in un ambiente generico, e’ impossibile predire la configurazione di oggetti che saranno catturati dalla telecamera. In questi casi, e’ richiesto di “astrarre il concetto” di oggetti. Con questo requisito in mente, abbiamo esplorato le proprieta’ dei metodi stocastici e mostrano che buoni tassi di classificazione possono essere ottenuti a condizione che l’insieme di addestramento sia abbastanza grande. Una struttura flessibile deve essere in grado di individuare le regioni in movimento e riconoscere gli oggetti di interesse. Abbiamo sviluppato una struttura per la gestione dei problemi di individuazione e classificazione. Rispetto ad altri metodi, i metodi proposti offrono una struttura flessibile per l’individuazione e classificazione degli oggetti, e che puo’ essere usata in modo efficiente in diversi ambienti interni ed esterni.XXII Cicl
    • 

    corecore