50 research outputs found

    A review on frequency synchronization in collaborative beamforming: a practical approach

    Get PDF
    Coherent signal reception from distributed beamforming nodes of virtual antenna array formation requires frequency synchronization of the participating nodes. Signals at the target receiver are out of phase due to unsynchronized local oscillator’s (LO) reference signal of all the nodes in the systems. Practical cases of this problem are considered. In this article, a brief overview is presented of the need for the frequency synchronization and the resulting effect of mitigation avoidance. A variant of the closed-loop feedback algorithm is used to provide LO drifts information to the beamforming transmitters. These feedbacks are used to estimate, correct, and predict the nonlinear LO offsets that will result in near (0) phase offset of the received signal. The algorithms are implemented in software defined radio (SDR) and transmitted through the RF front end of devices like the NI 2920/N210 USRP

    Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety

    Full text link
    5G promises many new vertical service areas beyond simple communication and data transfer. We propose CPCL (cooperative passive coherent location), a distributed MIMO radar service, which can be offered by mobile radio network operators as a service for public user groups. CPCL comes as an inherent part of the radio network and takes advantage of the most important key features proposed for 5G. It extends the well-known idea of passive radar (also known as passive coherent location, PCL) by introducing cooperative principles. These range from cooperative, synchronous radio signaling, and MAC up to radar data fusion on sensor and scenario levels. By using software-defined radio and network paradigms, as well as real-time mobile edge computing facilities intended for 5G, CPCL promises to become a ubiquitous radar service which may be adaptive, reconfigurable, and perhaps cognitive. As CPCL makes double use of radio resources (both in terms of frequency bands and hardware), it can be considered a green technology. Although we introduce the CPCL idea from the viewpoint of vehicle-to-vehicle/infrastructure (V2X) communication, it can definitely also be applied to many other applications in industry, transport, logistics, and for safety and security applications

    Feedback Mechanisms for Centralized and Distributed Mobile Systems

    Get PDF
    The wireless communication market is expected to witness considerable growth in the immediate future due to increasing smart device usage to access real-time data. Mobile devices become the predominant method of Internet access via cellular networks (4G/5G) and the onset of virtual reality (VR), ushering in the wide deployment of multiple bands, ranging from TVWhite Spaces to cellular/WiFi bands and on to mmWave. Multi-antenna techniques have been considered to be promising approaches in telecommunication to optimize the utilization of radio spectrum and minimize the cost of system construction. The performance of multiple antenna technology depends on the utilization of radio propagation properties and feedback of such information in a timely manner. However, when a signal is transmitted, it is usually dispersed over time coming over different paths of different lengths due to reflections from obstacles or affected by Doppler shift in mobile environments. This motivates the design of novel feedback mechanisms that improve the performance of multi-antenna systems. Accurate channel state information (CSI) is essential to increasing throughput in multiinput, multi-output (MIMO) systems with digital beamforming. Channel-state information for the operation of MIMO schemes (such as transmit diversity or spatial multiplexing) can be acquired by feedback of CSI reports in the downlink direction, or inferred from uplink measurements assuming perfect channel reciprocity (CR). However, most works make the assumption that channels are perfectly reciprocal. This assumption is often incorrect in practice due to poor channel estimation and imperfect channel feedback. Instead, experiments have demonstrated that channel reciprocity can be easily broken by multiple factors. Specifically, channel reciprocity error (CRE) introduced by transmitter-receiver imbalance have been widely studied by both simulations and experiments, and the impact of mobility and estimation error have been fully investigated in this thesis. In particular, unmanned aerial vehicles (UAVs) have asymmetric behavior when communicating with one another and to the ground, due to differences in altitude that frequently occur. Feedback mechanisms are also affected by channel differences caused by the user’s body. While there has been work to specifically quantify the losses in signal reception, there has been little work on how these channel differences affect feedback mechanisms. In this dissertation, we perform system-level simulations, implement design with a software defined radio platform, conduct in-field experiments for various wireless communication systems to analyze different channel feedback mechanisms. To explore the feedback mechanism, we then explore two specific real world scenarios, including UAV-based beamforming communications, and user-induced feedback systems

    Experimental verification of multi-antenna techniques for aerial and ground vehicles’ communication

    Get PDF
    corecore