3,853 research outputs found

    Curvature Filtrations for Graph Generative Model Evaluation

    Full text link
    Graph generative model evaluation necessitates understanding differences between graphs on the distributional level. This entails being able to harness salient attributes of graphs in an efficient manner. Curvature constitutes one such property of graphs, and has recently started to prove useful in characterising graphs. Its expressive properties, stability, and practical utility in model evaluation remain largely unexplored, however. We combine graph curvature descriptors with emerging methods from topological data analysis to obtain robust, expressive descriptors for evaluating graph generative models

    Learning and Interpreting Multi-Multi-Instance Learning Networks

    Get PDF
    We introduce an extension of the multi-instance learning problem where examples are organized as nested bags of instances (e.g., a document could be represented as a bag of sentences, which in turn are bags of words). This framework can be useful in various scenarios, such as text and image classification, but also supervised learning over graphs. As a further advantage, multi-multi instance learning enables a particular way of interpreting predictions and the decision function. Our approach is based on a special neural network layer, called bag-layer, whose units aggregate bags of inputs of arbitrary size. We prove theoretically that the associated class of functions contains all Boolean functions over sets of sets of instances and we provide empirical evidence that functions of this kind can be actually learned on semi-synthetic datasets. We finally present experiments on text classification, on citation graphs, and social graph data, which show that our model obtains competitive results with respect to accuracy when compared to other approaches such as convolutional networks on graphs, while at the same time it supports a general approach to interpret the learnt model, as well as explain individual predictions.Comment: JML

    Streaming MASSIF : cascading reasoning for efficient processing of iot data streams

    Get PDF
    In the Internet of Things (IoT), multiple sensors and devices are generating heterogeneous streams of data. To perform meaningful analysis over multiple of these streams, stream processing needs to support expressive reasoning capabilities to infer implicit facts and temporal reasoning to capture temporal dependencies. However, current approaches cannot perform the required reasoning expressivity while detecting time dependencies over high frequency data streams. There is still a mismatch between the complexity of processing and the rate data is produced in volatile domains. Therefore, we introduce Streaming MASSIF, a Cascading Reasoning approach performing expressive reasoning and complex event processing over high velocity streams. Cascading Reasoning is a vision that solves the problem of expressive reasoning over high frequency streams by introducing a hierarchical approach consisting of multiple layers. Each layer minimizes the processed data and increases the complexity of the data processing. Cascading Reasoning is a vision that has not been fully realized. Streaming MASSIF is a layered approach allowing IoT service to subscribe to high-level and temporal dependent concepts in volatile data streams. We show that Streaming MASSIF is able to handle high velocity streams up to hundreds of events per second, in combination with expressive reasoning and complex event processing. Streaming MASSIF realizes the Cascading Reasoning vision and is able to combine high expressive reasoning with high throughput of processing. Furthermore, we formalize semantically how the different layers in our Cascading Reasoning Approach collaborate

    Visualizing and Interacting with Concept Hierarchies

    Full text link
    Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity

    On the Expressivity of Persistent Homology in Graph Learning

    Full text link
    Persistent homology, a technique from computational topology, has recently shown strong empirical performance in the context of graph classification. Being able to capture long range graph properties via higher-order topological features, such as cycles of arbitrary length, in combination with multi-scale topological descriptors, has improved predictive performance for data sets with prominent topological structures, such as molecules. At the same time, the theoretical properties of persistent homology have not been formally assessed in this context. This paper intends to bridge the gap between computational topology and graph machine learning by providing a brief introduction to persistent homology in the context of graphs, as well as a theoretical discussion and empirical analysis of its expressivity for graph learning tasks
    • …
    corecore