5,321 research outputs found

    Making AI Meaningful Again

    Get PDF
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial intelligence encouraged by these successes, especially in the domain of language processing. We then show an alternative approach to language-centric AI, in which we identify a role for philosophy

    A commentary on standardization in the Semantic Web, Common Logic and MultiAgent Systems

    Get PDF
    Given the ubiquity of the Web, the Semantic Web (SW) offers MultiAgent Systems (MAS) a most wide-ranging platform by which they could intercommunicate. It can be argued however that MAS require levels of logic that the current Semantic Web has yet to provide. As ISO Common Logic (CL) ISO/IEC IS 24707:2007 provides a firstorder logic capability for MAS in an interoperable way, it seems natural to investigate how CL may itself integrate with the SW thus providing a more expressive means by which MAS can interoperate effectively across the SW. A commentary is accordingly presented on how this may be achieved. Whilst it notes that certain limitations remain to be addressed, the commentary proposes that standardising the SW with CL provides the vehicle by which MAS can achieve their potential.</p

    Predicting Network Attacks Using Ontology-Driven Inference

    Full text link
    Graph knowledge models and ontologies are very powerful modeling and re asoning tools. We propose an effective approach to model network attacks and attack prediction which plays important roles in security management. The goals of this study are: First we model network attacks, their prerequisites and consequences using knowledge representation methods in order to provide description logic reasoning and inference over attack domain concepts. And secondly, we propose an ontology-based system which predicts potential attacks using inference and observing information which provided by sensory inputs. We generate our ontology and evaluate corresponding methods using CAPEC, CWE, and CVE hierarchical datasets. Results from experiments show significant capability improvements comparing to traditional hierarchical and relational models. Proposed method also reduces false alarms and improves intrusion detection effectiveness.Comment: 9 page
    corecore