1,495 research outputs found

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    User-friendly and Extensible Web Data Extraction

    Get PDF
    Creation of web wrappers is a subject of study in the field of web data extraction. Designing a domain-specific language for a web wrapper is a challenging task, because it introduces trade-offs between expressiveness of a wrapper’s language and safety. In addition, little attention has been paid to execution of a wrapper in a restricted environment.In this paper we present a new wrapping language -- Serrano -- that has three goals: (1) ability to run in a restricted environment, such as a browser extension, (2) extensibility to balance the tradeoffs between expressiveness of a command set and safety, and (3) processing capabilities to eliminate the need for additional programs to clean the extracted data. Serrano has been successfully deployed in a number of projects and provided encouraging results

    Building Intelligent Web Applications Using Lightweight Wrappers

    Get PDF
    The Web so far has been incredibly successful at delivering information to human users. So successful actually, that there is now an urgent need to go beyond a browsing human. Unfortunately, the Web is not yet a well organized repository of nicely structured documents but rather a conglomerate of volatile HTML pages. To address this problem, we present the World Wide Web Wrapper Factory (W4F), a toolkit for the generation of wrappers for Web sources, that offers: (1) an expressive language to specify the extraction of complex structures from HTML pages; (2) a declarative mapping to various data formats like XML; (3) some visual tools to make the engineering of wrappers faster and easier

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Extraction and integration of data from semi-structured documents into business applications

    Get PDF
    Cover title.Includes bibliographical references (p. 8).Ph. Bonnet & S. Bressan

    Isolating JavaScript with Filters, Rewriting, and Wrappers

    Get PDF
    Abstract. We study methods that allow web sites to safely combine JavaScript from untrusted sources. If implemented properly, filters can prevent dangerous code from loading into the execution environment, while rewriting allows greater expressiveness by inserting run-time checks. Wrapping properties of the execution environment can prevent misuse without requiring changes to imported JavaScript. Using a formal semantics for the ECMA 262-3 standard language, we prove security properties of a subset of JavaScript, comparable in expressiveness to Facebook FBJS, obtained by combining three isolation mechanisms. The isolation guarantees of the three mechanisms are interdependent, with rewriting and wrapper functions relying on the absence of JavaScript constructs eliminated by language filters.

    Python and XML for agile scientific computing

    Get PDF
    • …
    corecore