1,210 research outputs found

    Expressive power of binary relevance and chain classifiers based on Bayesian Networks for multi-label classification

    Get PDF
    Bayesian network classifiers are widely used in machine learning because they intuitively represent causal relations. Multi-label classification problems require each instance to be assigned a subset of a defined set of h labels. This problem is equivalent to finding a multi-valued decision function that predicts a vector of h binary classes. In this paper we obtain the decision boundaries of two widely used Bayesian network approaches for building multi-label classifiers: Multi-label Bayesian network classifiers built using the binary relevance method and Bayesian network chain classifiers. We extend our previous single-label results to multi-label chain classifiers, and we prove that, as expected, chain classifiers provide a more expressive model than the binary relevance method

    Decision functions for chain classifiers based on Bayesian networks for multi-label classification

    Get PDF
    Multi-label classification problems require each instance to be assigned a subset of a defined set of labels. This problem is equivalent to finding a multi-valued decision function that predicts a vector of binary classes. In this paper we study the decision boundaries of two widely used approaches for building multi-label classifiers, when Bayesian networkaugmented naive Bayes classifiers are used as base models: Binary relevance method and chain classifiers. In particular extending previous single-label results to multi-label chain classifiers, we find polynomial expressions for the multi-valued decision functions associated with these methods. We prove upper boundings on the expressive power of both methods and we prove that chain classifiers provide a more expressive model than the binary relevance method

    Selecting a multi-label classification method for an interactive system

    Get PDF
    International audienceInteractive classification-based systems engage users to coach learning algorithms to take into account their own individual preferences. However most of the recent interactive systems limit the users to a single-label classification, which may be not expressive enough in some organization tasks such as film classification, where a multi-label scheme is required. The objective of this paper is to compare the behaviors of 12 multi-label classification methods in an interactive framework where "good" predictions must be produced in a very short time from a very small set of multi-label training examples. Experimentations highlight important performance differences for 4 complementary evaluation measures (Log-Loss, Ranking-Loss, Learning and Prediction Times). The best results are obtained for Multi-label k Nearest Neighbours (ML-kNN), Ensemble of Classifier Chains (ECC) and Ensemble of Binary Relevance (EBR)

    Classifier chains: A review and perspectives

    Get PDF
    The family of methods collectively known as classifier chains has become a popular approach to multi-label learning problems. This approach involves chaining together off-the-shelf binary classifiers in a directed structure, such that individual label predictions become features for other classifiers. Such methods have proved flexible and effective and have obtained state-of-the-art empirical performance across many datasets and multi-label evaluation metrics. This performance led to further studies of the underlying mechanism and efficacy, and investigation into how it could be improved. In the recent decade, numerous studies have explored the theoretical underpinnings of classifier chains, and many improvements have been made to the training and inference procedures, such that this method remains among the best options for multi-label learning. Given this past and ongoing interest, which covers a broad range of applications and research themes, the goal of this work is to provide a review of classifier chains, a survey of the techniques and extensions provided in the literature, as well as perspectives for this approach in the domain of multi-label classification in the future. We conclude positively, with a number of recommendations for researchers and practitioners, as well as outlining key issues for future research

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202
    corecore