5 research outputs found

    Autonomous Transitions Enhance CSLTA Expressiveness and Conciseness

    Get PDF
    CSLTA is a stochastic temporal logic for continuous-time Markov chains (CTMC) where formulas similarly to those of CTL* are inductively defined by nesting of timed path formulas and state formulas. In particular a timed path formula of CSLTA is specified by a single-clock Deterministic Timed Automaton (DTA). Such a DTA features two kinds of transitions: synchronizing transitions triggered by CTMC transitions and autonomous transitions triggered by time elapsing that change the location of the DTA when the clock reaches a given threshold. It has already been shown that CSLTA strictly includes stochastic logics like CSL and asCSL. An interesting variant of CSLTA consists in equipping transitions rather than locations by boolean formulas. Here we answer the following question: do autonomous transitions and/or boolean guards on transitions enhance expressiveness and/or conciseness of DTAs? We show that this is indeed the case. In establishing our main results we also identify an accurate syntactical characterization of DTAs for which the autonomous transitions do not add expressive power but lead to exponentially more concise DTAs

    Guarded Autonomous Transitions Increase Conciseness and Expressiveness of Timed Automata

    Get PDF
    International audienceTimed Automata (TA) are an appropriate model for specifying timed requirements for Continuous Time Markov Chains (CTMC). However in order to keep tractable the model checking of a TA over a CTMC, temporal logics based on TA, like CSL TA , restrict TA to have a single clock and to be deterministic (DTA). Different variants of DTAs have been proposed to address the issue of their expressiveness and conciseness. Here we study the effect of two possible features: (1) autonomous transitions which are triggered by time elapsing in addition to synchronized transitions and (2) transitions guarded by propositional formulas instead of propositional formulas guarding locations. We first show that autonomous guarded transitions increase the expressiveness of DTAs (as already shown for guarded locations). Then we identify a hierarchy of DTAs subclasses all equivalent to DTAs without guarded autonomous transitions and we analyze their respective conciseness. In particular we show that eliminating resets in autonomous transitions implies an exponential blow-up, while eliminating autonomous transitions without reset can be performed in polynomial time if decision diagrams are used. Finally we compare TA with guarded transitions to TA with guarded locations showing that the former model is exponentially more concise than the latter one

    Expressing and Computing Passage Time Measures of GSPN Models with HASL

    No full text
    International audiencePassage time measures specification and computation for Generalized Stochastic Petri Net models have been faced in the literature from different points of view. In particular three aspects have been developed: (1) how to select a specific token (called the tagged token) and measure the distribution of the time employed from an entry to an exit point in a subnet; (2) how to specify in a flexible way any condition on the paths of interest to be measured, (3) how to efficiently compute the required distribution. In this paper we focus on the last two points: the specification and computation of complex passage time measures in (Tagged) GSPNs using the Hybrid Automata Stochastic Logic (HASL) and the statistical model checker COSMOS. By considering GSPN models of two different systems (a flexible manufacturing system and a workflow), we identify a number of relevant performance measures (mainly passage-time distributions), formally express them in HASL terms and assess them by means of simulation in the COSMOS tool. The interest from the measures specification point of view is provided by the possibility of setting one or more timers along the paths, and setting the conditions for the paths selection, based on the measured values of such timers. With respect to other specification languages allowing to use timers in the specification of performance measures, HASL provides timers suspension, reactivation, and rate change along a path
    corecore