538 research outputs found

    Utilising Explanations to Mitigate Robot Conversational Failures

    Full text link
    This paper presents an overview of robot failure detection work from HRI and adjacent fields using failures as an opportunity to examine robot explanation behaviours. As humanoid robots remain experimental tools in the early 2020s, interactions with robots are situated overwhelmingly in controlled environments, typically studying various interactional phenomena. Such interactions suffer from real-world and large-scale experimentation and tend to ignore the 'imperfectness' of the everyday user. Robot explanations can be used to approach and mitigate failures, by expressing robot legibility and incapability, and within the perspective of common-ground. In this paper, I discuss how failures present opportunities for explanations in interactive conversational robots and what the potentials are for the intersection of HRI and explainability research

    Expectation-Aware Planning: A Unifying Framework for Synthesizing and Executing Self-Explaining Plans for Human-Aware Planning

    Full text link
    In this work, we present a new planning formalism called Expectation-Aware planning for decision making with humans in the loop where the human's expectations about an agent may differ from the agent's own model. We show how this formulation allows agents to not only leverage existing strategies for handling model differences but can also exhibit novel behaviors that are generated through the combination of these different strategies. Our formulation also reveals a deep connection to existing approaches in epistemic planning. Specifically, we show how we can leverage classical planning compilations for epistemic planning to solve Expectation-Aware planning problems. To the best of our knowledge, the proposed formulation is the first complete solution to decision-making in the presence of diverging user expectations that is amenable to a classical planning compilation while successfully combining previous works on explanation and explicability. We empirically show how our approach provides a computational advantage over existing approximate approaches that unnecessarily try to search in the space of models while also failing to facilitate the full gamut of behaviors enabled by our framework

    Teaching Robots to Span the Space of Functional Expressive Motion

    Full text link
    Our goal is to enable robots to perform functional tasks in emotive ways, be it in response to their users' emotional states, or expressive of their confidence levels. Prior work has proposed learning independent cost functions from user feedback for each target emotion, so that the robot may optimize it alongside task and environment specific objectives for any situation it encounters. However, this approach is inefficient when modeling multiple emotions and unable to generalize to new ones. In this work, we leverage the fact that emotions are not independent of each other: they are related through a latent space of Valence-Arousal-Dominance (VAD). Our key idea is to learn a model for how trajectories map onto VAD with user labels. Considering the distance between a trajectory's mapping and a target VAD allows this single model to represent cost functions for all emotions. As a result 1) all user feedback can contribute to learning about every emotion; 2) the robot can generate trajectories for any emotion in the space instead of only a few predefined ones; and 3) the robot can respond emotively to user-generated natural language by mapping it to a target VAD. We introduce a method that interactively learns to map trajectories to this latent space and test it in simulation and in a user study. In experiments, we use a simple vacuum robot as well as the Cassie biped
    • …
    corecore