355 research outputs found

    Model checking coalitional games in shortage resource scenarios

    Full text link
    Verification of multi-agents systems (MAS) has been recently studied taking into account the need of expressing resource bounds. Several logics for specifying properties of MAS have been presented in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism, called Priced Resource-Bounded Alternating-time Temporal Logic (PRBATL), whose main novelty consists in moving the notion of resources from a syntactic level (part of the formula) to a semantic one (part of the model). This allows us to track the evolution of the resource availability along the computations and provides us with a formalisms capable to model a number of real-world scenarios. Two relevant aspects are the notion of global availability of the resources on the market, that are shared by the agents, and the notion of price of resources, depending on their availability. In a previous work of ours, an initial step towards this new formalism was introduced, along with an EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of the proposed formalism, also in comparison with previous approaches. The main technical contribution is the proof of the EXPTIME-hardness of the the model checking problem for PRBATL, based on a reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machines. In particular, since the problem has multiple parameters, we show two fixed-parameter reductions.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Alternating-time temporal logic with resource bounds

    Get PDF
    Many problems in AI and multi-agent systems research are most naturally formulated in terms of the abilities of a coalition of agents. There exist several excellent logical tools for reasoning about coalitional ability. However, coalitional ability can be affected by the availability of resources, and there is no straightforward way of reasoning about resource requirements in logics such as Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). In this article, we describe a logic for reasoning about coalitional ability under resource constraints. We extend ATL with costs of actions and hence of strategies. We give a complete and sound axiomatization of the resulting logic, Resource-Bounded ATL (RB-ATL) and a model-checking algorithm for it

    Logic for coalitions with bounded resources

    Get PDF
    Recent work on Alternating-Time Temporal Logic and Coalition Logic has allowed the expression of many interesting properties of coalitions and strategies. However, there is no natural way of expressing resource requirements in these logics. In this article, we present a Resource-Bounded Coalition Logic (RBCL) that has explicit representation of resource bounds in the language. We give a complete and sound axiomatization of RBCL, a procedure for deciding satisfiability of RBCL formulas, and a model-checking algorithm. © 2010 The Author

    Alternating-time temporal logic with resource bounds

    Get PDF
    Many problems in AI and multi-agent systems research are most naturally formulated in terms of the abilities of a coalition of agents. There exist several excellent logical tools for reasoning about coalitional ability. However, coalitional ability can be affected by the availability of resources, and there is no straightforward way of reasoning about resource requirements in logics such as Coalition Logic (CL) and Alternating-time Temporal Logic (ATL). In this paper, we describe a logic for reasoning about coalitional ability under resource constraints. We extend ATL with costs of actions and hence of strategies. We give a complete and sound axiomatisation of the resulting logic, Resource-Bounded ATL (RB-ATL), and a model-checking algorithm for it

    Verifying systems of resource-bounded agents

    Get PDF
    Approaches to the verification of multi-agent systems are typically based on games or transition systems defined in terms of states and actions. However such approaches often ignore a key aspect of multi-agent systems, namely that the agents’ actions require (and sometimes produce) resources. We briefly survey previous work on the verification of multi-agent systems that takes resources into account, and outline some key challenges for future work

    Model-checking for resource-bounded ATL with production and consumption of resources

    Get PDF
    Several logics for expressing coalitional ability under resource bounds have been proposed and studied in the literature. Previous work has shown that if only consumption of resources is considered or the total amount of resources produced or consumed on any path in the system is bounded, then the model-checking problem for several standard logics, such as Resource-Bounded Coalition Logic (RB-CL) and Resource-Bounded Alternating-Time Temporal Logic (RB-ATL) is decidable. However, for coalition logics with unbounded resource production and consumption, only some undecidability results are known. In this paper, we show that the modelchecking problem for RB-ATL with unbounded production and consumption of resources is decidable but EXPSPACE-hard. We also investigate some tractable cases and provide a detailed comparison to a variant of the resource logic RAL, together with new complexity results

    Decidable model-checking for a resource logic with production of resources

    Get PDF
    Several logics for expressing coalitional ability under resource bounds have been proposed and studied in the literature. Previous work has shown that if only consumption of resources is considered or the total amount of resources produced or consumed on any path in the system is bounded, then the model-checking problem for several standard logics, such as Resource-Bounded Coalition Logic (RB-CL) and Resource-Bounded Alternating-Time Temporal Logic (RB-ATL) is decidable. However, for coalition logics with unbounded resource production and consumption, only some undecidability results are known. In this paper, we show that the model-checking problem for RB-ATL with unbounded production and consumption of resources is decidable
    • …
    corecore