18,784 research outputs found

    Teacher Perceptions and Professional Experience of E-Learning and Practical Subjects: Views of Selected Teachers in the Shiselweni Region of Eswatini

    Get PDF
    Several institutions amplected the tremendous variants technology offers in the advent of the covid-19 outbreak, bringing a paradigm shift in various fields regardless of digital competence and availability of resources. Many sectors, education inclusive had to adjust to the “new normal” transforming education drastically with a distinctive rise of e-learning as a pandemic management tool for tumultuous circumstances. E-learning was globally promoted to replace the conventional approach whereby teaching was undertaken remotely on digital platforms (Dhawan, 2020; Li & Lalani, 2020). The study evaluated primary teacher perceptions of the effectiveness of e-learning on practical subjects in 10 selected primary schools in the Shiselweni region of Eswatini. Practical subjects focus on two parts, theory and practice but practical sessions have huge significance in the learning process. Practical subject teaching posed a challenge to teachers during the covid-19 outbreak. The study was investigated by the baseline approach because it flags concerns by showing positive and negative impacts created during and after the study. Twenty-five (25) teachers were surveyed by convenience, snowballing, and random sampling procedures. Data interpretations epitomize that although the outbreak led to the sudden shutdown of schools, which was unprecedented, teachers managed to disseminate lessons by exploring different communication channels to connect learners, teachers, and parents. These were tailored toward the schedules and needs of families to ensure educational continuity. Engagement tools considered and utilized were messaging groups like WhatsApp, online conferences, e-mails, media, and other social media platforms to cater to all-inclusive instruction (UNICEF Romania, 2020). Teachers had fairly good knowledge of their subject content but no mastery over electronic tools for e-learning. E-learning demands acquired or learned skills, determination, strong self-motivation, and time management from both the teacher and learners. Amplecting newer educational technologies take time to implement effectually hence, a combined effort from the ministry of education, institutional management, teachers, and learners’ inclusiveness is of paramount importance. The study recommends that teachers must grow and learn along with their learners for added benefits as the world advances. Keywords: Covid-19 pandemic, e-learning, practical subjects, teacher perceptions. DOI: 10.7176/JEP/14-3-09 Publication date: January 31st 202

    Effectiveness and User Experience of Augmented and Mixed Reality for Procedural Task Training

    Get PDF
    Use of augmented reality (AR) and mixed reality (MR) technologies for training is increasing, due in part to opportunities for increased immersion, safer training, and reduced costs. However, AR/MR training effectiveness and user experience, particularly for head-mounted displays (HMDs), is not well understood. The purpose of this study is to investigate user perceptions and retention of AR/MR training delivered through a HMD for a procedural task. This two-part study utilized a within-subjects experimental design with 30 participants to determine how instruction method (paper vs. AR vs. MR) and time of procedure recall (immediate vs. post-test vs. retention) influenced completion time, perceived task difficulty, perceived confidence in successfully completing the task, workload, user experience, and trainee reactions. Results indicate differences between instruction methods for user experience and preference, with significantly higher user experience ratings for MR and lower preference rankings for AR. Findings also show decreased performance, increased perceived task difficulty, and decreased confidence as time since training increased, with no significant differences in these measures between instruction methods. Completion times and workload were also found to be comparable between instruction methods. This work provides insight into objective and subjective differences between paper-, AR-, and MR-based training experiences, which can be used to determine which type of training is best suited for a particular use case. Recommendations for appropriately matching training modalities and scenarios, as well as for how to successfully design AR/MR training experiences, are discussed

    Immersive Virtual Reality Error Management Training for CNC Machining Setup Procedures

    Get PDF
    In order to address the expanding manufacturing talent gap for skilled machinists and limitations with existing machining training programs, this study introduces an immersive Virtual Reality (VR) computer numerical control (CNC) machining training environment CNC machine setup processes with a novel error management-based training curriculum. Current machinist training programs typically require active mentorship from skilled individuals over several years and consume a large amount of materials and tools. In addition, mistakes and errors made during the setup process can create safety risks, waste material, and break equipment, which have not been considered by the existing VR CNC milling training environments. In order to address these operational challenges, a novel error-management based training in VR is proposed, which allows trainees to learn machine setup procedures, common errors and mistakes, and provides an opportunity to practice identifying errors. The training first introduces students to the setup procedure, followed by demonstrations of error cases and identification and management strategies culminating in practice opportunities. Through the VR system, trainees witness a spatial demonstration of the procedure, guided by auditory and text instructions with a realistic error identification practice session. In order to evaluate the impact of the novel error management curriculum and the virtual reality training environment, this study compared the efficacy of three training conditions; video based training, video training with an error management module, and VR training with integrated error management training. The results of the study indicate error management training increases the mistake identification and correction and task completion time. Participant feedback indicates that immersive training increases engagement and reduces distractions during the training phase. Furthermore, participants feel more confident by asking fewer questions in order to operate the CNC milling machine. These findings suggest further developments in error management training for CNC machining training in an immersive VR environment may improve training outcomes and workforce readiness

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    Psychophysiological analysis of a pedagogical agent and robotic peer for individuals with autism spectrum disorders.

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of people’s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a predictable, dependable, and less complicated environment, where the interaction complexity can be adjusted so as to account for these individuals’ needs. The first phase of this dissertation presents an artificial-intelligence-based tutoring system which uses an interactive computer character as a pedagogical agent (PA) that simulates a human tutor teaching sight word reading to individuals with ASD. This phase examines the efficacy of an instructional package comprised of an autonomous pedagogical agent, automatic speech recognition, and an evidence-based instructional procedure referred to as constant time delay (CTD). A concurrent multiple-baseline across-participants design is used to evaluate the efficacy of intervention. Additionally, post-treatment probes are conducted to assess maintenance and generalization. The results suggest that all three participants acquired and maintained new sight words and demonstrated generalized responding. The second phase of this dissertation describes the augmentation of the tutoring system developed in the first phase with an autonomous humanoid robot which serves the instructional role of a peer for the student. In this tutoring paradigm, the robot adopts a peer metaphor, where its function is to act as a peer. With the introduction of the robotic peer (RP), the traditional dyadic interaction in tutoring systems is augmented to a novel triadic interaction in order to enhance the social richness of the tutoring system, and to facilitate learning through peer observation. This phase evaluates the feasibility and effects of using PA-delivered sight word instruction, based on a CTD procedure, within a small-group arrangement including a student with ASD and the robotic peer. A multiple-probe design across word sets, replicated across three participants, is used to evaluate the efficacy of intervention. The findings illustrate that all three participants acquired, maintained, and generalized all the words targeted for instruction. Furthermore, they learned a high percentage (94.44% on average) of the non-target words exclusively instructed to the RP. The data show that not only did the participants learn nontargeted words by observing the instruction to the RP but they also acquired their target words more efficiently and with less errors by the addition of an observational component to the direct instruction. The third and fourth phases of this dissertation focus on physiology-based modeling of the participants’ affective experiences during naturalistic interaction with the developed tutoring system. While computers and robots have begun to co-exist with humans and cooperatively share various tasks; they are still deficient in interpreting and responding to humans as emotional beings. Wearable biosensors that can be used for computerized emotion recognition offer great potential for addressing this issue. The third phase presents a Bluetooth-enabled eyewear – EmotiGO – for unobtrusive acquisition of a set of physiological signals, i.e., skin conductivity, photoplethysmography, and skin temperature, which can be used as autonomic readouts of emotions. EmotiGO is unobtrusive and sufficiently lightweight to be worn comfortably without interfering with the users’ usual activities. This phase presents the architecture of the device and results from testing that verify its effectiveness against an FDA-approved system for physiological measurement. The fourth and final phase attempts to model the students’ engagement levels using their physiological signals collected with EmotiGO during naturalistic interaction with the tutoring system developed in the second phase. Several physiological indices are extracted from each of the signals. The students’ engagement levels during the interaction with the tutoring system are rated by two trained coders using the video recordings of the instructional sessions. Supervised pattern recognition algorithms are subsequently used to map the physiological indices to the engagement scores. The results indicate that the trained models are successful at classifying participants’ engagement levels with the mean classification accuracy of 86.50%. These models are an important step toward an intelligent tutoring system that can dynamically adapt its pedagogical strategies to the affective needs of learners with ASD

    Teaching and learning in virtual worlds: is it worth the effort?

    Get PDF
    Educators have been quick to spot the enormous potential afforded by virtual worlds for situated and authentic learning, practising tasks with potentially serious consequences in the real world and for bringing geographically dispersed faculty and students together in the same space (Gee, 2007; Johnson and Levine, 2008). Though this potential has largely been realised, it generally isn’t without cost in terms of lack of institutional buy-in, steep learning curves for all participants, and lack of a sound theoretical framework to support learning activities (Campbell, 2009; Cheal, 2007; Kluge & Riley, 2008). This symposium will explore the affordances and issues associated with teaching and learning in virtual worlds, all the time considering the question: is it worth the effort
    • 

    corecore