3,731 research outputs found

    Image Reconstruction in Optical Interferometry

    Full text link
    This tutorial paper describes the problem of image reconstruction from interferometric data with a particular focus on the specific problems encountered at optical (visible/IR) wavelengths. The challenging issues in image reconstruction from interferometric data are introduced in the general framework of inverse problem approach. This framework is then used to describe existing image reconstruction algorithms in radio interferometry and the new methods specifically developed for optical interferometry.Comment: accepted for publication in IEEE Signal Processing Magazin

    Learned Camera Gain and Exposure Control for Improved Visual Feature Detection and Matching

    Full text link
    Successful visual navigation depends upon capturing images that contain sufficient useful information. In this paper, we explore a data-driven approach to account for environmental lighting changes, improving the quality of images for use in visual odometry (VO) or visual simultaneous localization and mapping (SLAM). We train a deep convolutional neural network model to predictively adjust camera gain and exposure time parameters such that consecutive images contain a maximal number of matchable features. The training process is fully self-supervised: our training signal is derived from an underlying VO or SLAM pipeline and, as a result, the model is optimized to perform well with that specific pipeline. We demonstrate through extensive real-world experiments that our network can anticipate and compensate for dramatic lighting changes (e.g., transitions into and out of road tunnels), maintaining a substantially higher number of inlier feature matches than competing camera parameter control algorithms.Comment: Accepted to IEEE Robotics and Automation Letters and to the IEEE International Conference on Robotics and Automation (ICRA) 202

    Action and behavior: a free-energy formulation

    Get PDF
    We have previously tried to explain perceptual inference and learning under a free-energy principle that pursues Helmholtz’s agenda to understand the brain in terms of energy minimization. It is fairly easy to show that making inferences about the causes of sensory data can be cast as the minimization of a free-energy bound on the likelihood of sensory inputs, given an internal model of how they were caused. In this article, we consider what would happen if the data themselves were sampled to minimize this bound. It transpires that the ensuing active sampling or inference is mandated by ergodic arguments based on the very existence of adaptive agents. Furthermore, it accounts for many aspects of motor behavior; from retinal stabilization to goal-seeking. In particular, it suggests that motor control can be understood as fulfilling prior expectations about proprioceptive sensations. This formulation can explain why adaptive behavior emerges in biological agents and suggests a simple alternative to optimal control theory. We illustrate these points using simulations of oculomotor control and then apply to same principles to cued and goal-directed movements. In short, the free-energy formulation may provide an alternative perspective on the motor control that places it in an intimate relationship with perception

    Application of Saliency Maps for Optimizing Camera Positioning in Deep Learning Applications

    Get PDF
    In the fields of process control engineering and robotics, especially in automatic control, optimization challenges frequently manifest as complex problems with expensive evaluations. This thesis zeroes in on one such problem: the optimization of camera positions for Convolutional Neural Networks (CNNs). CNNs have specific attention points in images that are often not intuitive to human perception, making camera placement critical for performance. The research is guided by two primary questions. The first investigates the role of Explainable Artificial Intelligence (XAI), specifically GradCAM++ visual explanations, in Computer Vision for aiding in the evaluation of different camera positions. Building on this, the second question assesses a novel algorithm that leverages these XAI features against traditional black-box optimization methods. To answer these questions, the study employs a robotic auto-positioning system for data collection, CNN model training, and performance evaluation. A case study focused on classifying flow regimes in industrial-grade bioreactors validates the method. The proposed approach shows improvements over established techniques like Grid Search, Random Search, Bayesian optimization, and Simulated Annealing. Future work will focus on gathering more data and including noise for generalized conclusions.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and OutlookIm Bereich der Prozessleittechnik und Robotik, speziell bei der automatischen Steuerung, treten oft komplexe Optimierungsprobleme auf. Diese Arbeit konzentriert sich auf die Optimierung der Kameraplatzierung in Anwendungen, die Convolutional Neural Networks (CNNs) verwenden. Da CNNs spezifische, fĂŒr den Menschen nicht immer ersichtliche, Merkmale in Bildern hervorheben, ist die intuitive Platzierung der Kamera oft nicht optimal. Zwei Forschungsfragen leiten diese Arbeit: Die erste Frage untersucht die Rolle von ErklĂ€rbarer KĂŒnstlicher Intelligenz (XAI) in der Computer Vision zur Bereitstellung von Merkmalen fĂŒr die Bewertung von Kamerapositionen. Die zweite Frage vergleicht einen darauf basierenden Algorithmus mit anderen Blackbox-Optimierungstechniken. Ein robotisches Auto-Positionierungssystem wird zur Datenerfassung und fĂŒr Experimente eingesetzt. Als Lösungsansatz wird eine Methode vorgestellt, die XAI-Merkmale, insbesondere solche aus GradCAM++ Erkenntnissen, mit einem Bayesschen Optimierungsalgorithmus kombiniert. Diese Methode wird in einer Fallstudie zur Klassifizierung von Strömungsregimen in industriellen Bioreaktoren angewendet und zeigt eine gesteigerte performance im Vergleich zu etablierten Methoden. ZukĂŒnftige Forschung wird sich auf die Sammlung weiterer Daten, die Inklusion von verrauschten Daten und die Konsultation von Experten fĂŒr eine kostengĂŒnstigere Implementierung konzentrieren.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and Outloo
    • 

    corecore