481 research outputs found

    Rotation Invariant on Harris Interest Points for Exposing Image Region Duplication Forgery

    Get PDF
    Nowadays, image forgery has become common because only an editing package software and a digital camera are required to counterfeit an image. Various fraud detection systems have been developed in accordance with the requirements of numerous applications and to address different types of image forgery. However, image fraud detection is a complicated process given that is necessary to identify the image processing tools used to counterfeit an image. Here, we describe recent developments in image fraud detection. Conventional techniques for detecting duplication forgeries have difficulty in detecting postprocessing falsification, such as grading and joint photographic expert group compression. This study proposes an algorithm that detects image falsification on the basis of Hessian features

    A Forensic Scheme for Revealing Post-processed Region Duplication Forgery in Suspected Images

    Get PDF
    Recent researches have demonstrated that local interest points alone can be employed to detect region duplication forgery in image forensics. Authentic images may be abused by copy-move tool in Adobe Photoshop to fully contained duplicated regions such as objects with high primitives such as corners and edges. Corners and edges represent the internal structure of an object in the image which makes them have a discriminating property under geometric transformations such as scale and rotation operation. They can be localised using scale-invariant features transform (SIFT) algorithm. In this paper, we provide an image forgery detection technique by using local interest points. Local interest points can be exposed by extracting adaptive non-maximal suppression (ANMS) keypoints from dividing blocks in the segmented image to detect such corners of objects. We also demonstrate that ANMS keypoints can be effectively utilised to detect blurred and scaled forged regions. The ANMS features of the image are shown to exhibit the internal structure of copy moved region. We provide a new texture descriptor called local phase quantisation (LPQ) that is robust to image blurring and also to eliminate the false positives of duplicated regions. Experimental results show that our scheme has the ability to reveal region duplication forgeries under scaling, rotation and blur manipulation of JPEG images on MICC-F220 and CASIA v2 image datasets

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    A tool to support the creation of datasets of tampered videos

    Get PDF
    Digital Video Forensics is getting a growing interest from the Multimedia research community, as the need for methods to validate the authenticity of a video content is increasing with the number of videos freely available to the digital users. Unlike Digital Image Forensics, to our knowledge, there are not standard datasets to test video forgery detection techniques. In this paper we present a new tool to support the users in creating datasets of tampered videos. We furthermore present our own dataset and we discuss some remarks about how to create forgeries difficult to be detected by an observer, to the naked eye

    Copy-move forgery detection: a survey on time complexity issues and solutions

    Get PDF
    As the image processing especially image editing software evolve, more image manipulations were possible to be done, thus authentication of image become a very crucial task. Copy-move forgery detection (CMFD), a popular research focus in digital image forensic, is used to authenticate an image by detecting malicious copy-move tampering in an image. Copy-move forgery occurs when a region in an image is copied and paste into the same image. There were many survey and review papers discussed about CMFD robustness and accuracy yet less attention was given to performance and time complexity. In this paper, we attempts to highlight the key factors contribute to the time complexity issue. Before that, the CMFD processes were first explained for better understanding. The trends of tackling those issues are then explored. Finally, numbers of proposed solutions will be outlined to conclude this paper

    Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection

    Get PDF
    The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection has the highest accuracy. The research was carried out on images without noise and with Gaussian noise

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets

    An Overview on Image Forensics

    Get PDF
    The aim of this survey is to provide a comprehensive overview of the state of the art in the area of image forensics. These techniques have been designed to identify the source of a digital image or to determine whether the content is authentic or modified, without the knowledge of any prior information about the image under analysis (and thus are defined as passive). All these tools work by detecting the presence, the absence, or the incongruence of some traces intrinsically tied to the digital image by the acquisition device and by any other operation after its creation. The paper has been organized by classifying the tools according to the position in the history of the digital image in which the relative footprint is left: acquisition-based methods, coding-based methods, and editing-based schemes
    corecore