25 research outputs found

    Real-time cross-layer design for large-scale flood detection and attack trace-back mechanism in IEEE 802.11 wireless mesh networks

    Get PDF
    IEEE 802.11 WMN is an emerging next generation low-cost multi-hop wireless broadband provisioning technology. It has the capability of integrating wired and wireless networks such as LANs, IEEE 802.11 WLANs, IEEE 802.16 WMANs, and sensor networks. This kind of integration: large-scale coverage, decentralised and multi-hop architecture, multi-radios, multi-channel assignments, ad hoc connectivity support the maximum freedom of users to join or leave the network from anywhere and at anytime has made the situation far more complex. As a result broadband resources are exposed to various kinds of security attacks, particularly DoS attacks

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    Distributed Storage with Strong Data Integrity based on Blockchain Mechanisms

    Get PDF
    Master's thesis in Computer scienceA blockchain is a datastructure that is an append-only chain of blocks. Each block contains a set of transaction and has a cryptographic link back to its predecessor. The cryptographic link serves to protect the integrity of the blockchain. A key property of blockchain systems is that it allows mu- tually distrusting entities to reach consensus over a unique order in which transactions are appended. The most common usage of blockchains is in cryptocurrencies such as Bitcoin. In this thesis we use blockchain technology to design a scalable architec- ture for a storage system that can provide strong data integrity and ensure the permanent availability of the data. We study recent literature in blockchain and cryptography to identify the desired characteristics of such a system. In comparison to similar systems, we are able to gain increased performance by designing ours around a permissioned blockchain, allowing only a predefined set of nodes to write to the ledger. A prototype of the system is built on top of existing open-source software. An experimental evaluation using different quorum sizes of the prototype is also presented

    ZeroComm: Decentralized, Secure and Trustful Group Communication

    Get PDF
    In the context of computer networks, decentralization is a network architecture that distributes both workload and control of a system among a set of coequal participants. Applications based on such networks enhance trust involved in communication by eliminating the external author- ities with self-interests, including governments and tech companies. The decentralized model delegates the ownership of data to individual users and thus mitigates undesirable behaviours such as harvesting personal information by external organizations. Consequently, decentral- ization has been adopted as the key feature in the next generation of the Internet model which is known as Web 3.0. DIDComm is a set of abstract protocols which enables secure messaging with decentralization and thus serves for the realization of Web 3.0 networks. It standardizes and transforms existing network applications to enforce secure, trustful and decentralized com- munication. Prior work on DIDComm has only been restricted to pair-wise communication and hence it necessitates a feasible strategy for adapting the Web 3.0 concepts in group-oriented networks. Inspired by the demand for a group communication model in Web 3.0, this study presents Zero- Comm which preserves decentralization, security and trust throughout the fundamental opera- tions of a group such as messaging and membership management. ZeroComm is built atop the publisher-subscriber pattern which serves as a messaging architecture for enabling communi- cation among multiple members based on the subjects of their interests. This is realized in our implementation through ZeroMQ, a low-level network library that facilitates the construction of advanced and distributed messaging patterns. The proposed solution leverages DIDComm protocols to deliver safe communication among group members at the expense of performance and efficiency. ZeroComm offers two different modes of group communication based on the organization of relationships among members with a compromise between performance and security. Our quantitative analysis shows that the proposed model performs efficiently for the messaging operation whereas joining a group is a relatively exhaustive procedure due to the es- tablishment of secure and decentralized relationships among members. ZeroComm primarily serves as a low-level messaging framework but can be extended with advanced features such as message ordering, crash recovery of members and secure routing of messages

    The Proceedings of 15th Australian Information Security Management Conference, 5-6 December, 2017, Edith Cowan University, Perth, Australia

    Get PDF
    Conference Foreword The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fifteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The papers cover topics from vulnerabilities in “Internet of Things” protocols through to improvements in biometric identification algorithms and surveillance camera weaknesses. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Twenty two papers were submitted from Australia and overseas, of which eighteen were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conference. To our sponsors, also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages
    corecore