13,005 research outputs found

    Reflections on Eight Years of Instrument Creation with Machine Learning

    Get PDF
    Machine learning (ML) has been used to create mappings for digital musical instruments for over twenty-five years, and numerous ML toolkits have been developed for the NIME community. However, little published work has studied how ML has been used in sustained instrument building and performance practices. This paper examines the experiences of instrument builder and performer Laetitia Sonami, who has been using ML to build and refine her Spring Spyre instrument since 2012. Using Sonami’s current practice as a case study, this paper explores the utility, opportunities, and challenges involved in using ML in practice over many years. This paper also reports the perspective of Rebecca Fiebrink, the creator of the Wekinator ML tool used by Sonami, revealing how her work with Sonami has led to changes to the software and to her teaching. This paper thus contributes a deeper understanding of the value of ML for NIME practitioners, and it can inform design considerations for future ML toolkits as well as NIME pedagogy. Further, it provides new perspectives on familiar NIME conversations about mapping strategies, expressivity, and control, informed by a dedicated practice over many years

    Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems

    Full text link
    As robotic systems are moved out of factory work cells into human-facing environments questions of choreography become central to their design, placement, and application. With a human viewer or counterpart present, a system will automatically be interpreted within context, style of movement, and form factor by human beings as animate elements of their environment. The interpretation by this human counterpart is critical to the success of the system's integration: knobs on the system need to make sense to a human counterpart; an artificial agent should have a way of notifying a human counterpart of a change in system state, possibly through motion profiles; and the motion of a human counterpart may have important contextual clues for task completion. Thus, professional choreographers, dance practitioners, and movement analysts are critical to research in robotics. They have design methods for movement that align with human audience perception, can identify simplified features of movement for human-robot interaction goals, and have detailed knowledge of the capacity of human movement. This article provides approaches employed by one research lab, specific impacts on technical and artistic projects within, and principles that may guide future such work. The background section reports on choreography, somatic perspectives, improvisation, the Laban/Bartenieff Movement System, and robotics. From this context methods including embodied exercises, writing prompts, and community building activities have been developed to facilitate interdisciplinary research. The results of this work is presented as an overview of a smattering of projects in areas like high-level motion planning, software development for rapid prototyping of movement, artistic output, and user studies that help understand how people interpret movement. Finally, guiding principles for other groups to adopt are posited.Comment: Under review at MDPI Arts Special Issue "The Machine as Artist (for the 21st Century)" http://www.mdpi.com/journal/arts/special_issues/Machine_Artis

    Design Considerations for Real-Time Collaboration with Creative Artificial Intelligence

    Get PDF
    Machines incorporating techniques from artificial intelligence and machine learning can work with human users on a moment-to-moment, real-time basis to generate creative outcomes, performances and artefacts. We define such systems collaborative, creative AI systems, and in this article, consider the theoretical and practical considerations needed for their design so as to support improvisation, performance and co-creation through real-time, sustained, moment-to-moment interaction. We begin by providing an overview of creative AI systems, examining strengths, opportunities and criticisms in order to draw out the key considerations when designing AI for human creative collaboration. We argue that the artistic goals and creative process should be first and foremost in any design. We then draw from a range of research that looks at human collaboration and teamwork, to examine features that support trust, cooperation, shared awareness and a shared information space. We highlight the importance of understanding the scope and perception of two-way communication between human and machine agents in order to support reflection on conflict, error, evaluation and flow. We conclude with a summary of the range of design challenges for building such systems in provoking, challenging and enhancing human creative activity through their creative agency

    The Machine Learning Algorithm as Creative Musical Tool

    Get PDF
    Machine learning is the capacity of a computational system to learn structures from datasets in order to make prediction in front of newly seen datasets. Such approach offers a significant advantage in music scenarios in which musicians can teach the system to learn an idiosyncratic style, or can break the rules to explore the system capacity in unexpected ways. In this chapter we draw on music, machine learning, and human-computer interaction to elucidate an understanding of machine learning algorithms as creative tools for music and the sonic arts. We motivate a new understanding of learning algorithms as human-computer interfaces. We show that, like other interfaces, learning algorithms can be characterised by the ways their affordances intersect with goals of human users. We also argue that the nature of interaction between users and algorithms impacts the usability and usefulness of those algorithms in profound ways. This human-centred view of machine learning motivates our concluding discussion of what it means to employ machine learning as a creative tool

    Pathway to Future Symbiotic Creativity

    Full text link
    This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed

    Where creativity comes from: the social spaces of embodied minds

    Get PDF
    This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality. This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality

    Presented at New Factual Storytelling Symposium, Canberra

    Get PDF
    Presented Master of Arts research at New Factual Storytelling Symposium, Canberra, by Skype, and screened my film 'Greensplat' http://ucdoclab.blogspot.co.nz/p/news.htm

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    AI Methods in Algorithmic Composition: A Comprehensive Survey

    Get PDF
    Algorithmic composition is the partial or total automation of the process of music composition by using computers. Since the 1950s, different computational techniques related to Artificial Intelligence have been used for algorithmic composition, including grammatical representations, probabilistic methods, neural networks, symbolic rule-based systems, constraint programming and evolutionary algorithms. This survey aims to be a comprehensive account of research on algorithmic composition, presenting a thorough view of the field for researchers in Artificial Intelligence.This study was partially supported by a grant for the MELOMICS project (IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC- 5123) from the Consejería de Innovación y Ciencia de Andalucía
    corecore