204 research outputs found

    Recursive Aggregation of Estimators by Mirror Descent Algorithm with Averaging

    Get PDF
    We consider a recursive algorithm to construct an aggregated estimator from a finite number of base decision rules in the classification problem. The estimator approximately minimizes a convex risk functional under the l1-constraint. It is defined by a stochastic version of the mirror descent algorithm (i.e., of the method which performs gradient descent in the dual space) with an additional averaging. The main result of the paper is an upper bound for the expected accuracy of the proposed estimator. This bound is of the order (logM)/t\sqrt{(\log M)/t} with an explicit and small constant factor, where MM is the dimension of the problem and tt stands for the sample size. A similar bound is proved for a more general setting that covers, in particular, the regression model with squared loss.Comment: 29 pages; mai 200

    A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive Optimality

    Get PDF
    Stochastic mirror descent (SMD) is a fairly new family of algorithms that has recently found a wide range of applications in optimization, machine learning, and control. It can be considered a generalization of the classical stochastic gradient algorithm (SGD), where instead of updating the weight vector along the negative direction of the stochastic gradient, the update is performed in a "mirror domain" defined by the gradient of a (strictly convex) potential function. This potential function, and the mirror domain it yields, provides considerable flexibility in the algorithm compared to SGD. While many properties of SMD have already been obtained in the literature, in this paper we exhibit a new interpretation of SMD, namely that it is a risk-sensitive optimal estimator when the unknown weight vector and additive noise are non-Gaussian and belong to the exponential family of distributions. The analysis also suggests a modified version of SMD, which we refer to as symmetric SMD (SSMD). The proofs rely on some simple properties of Bregman divergence, which allow us to extend results from quadratics and Gaussians to certain convex functions and exponential families in a rather seamless way

    Training Deep Networks without Learning Rates Through Coin Betting

    Get PDF
    Deep learning methods achieve state-of-the-art performance in many application scenarios. Yet, these methods require a significant amount of hyperparameters tuning in order to achieve the best results. In particular, tuning the learning rates in the stochastic optimization process is still one of the main bottlenecks. In this paper, we propose a new stochastic gradient descent procedure for deep networks that does not require any learning rate setting. Contrary to previous methods, we do not adapt the learning rates nor we make use of the assumed curvature of the objective function. Instead, we reduce the optimization process to a game of betting on a coin and propose a learning rate free optimal algorithm for this scenario. Theoretical convergence is proven for convex and quasi-convex functions and empirical evidence shows the advantage of our algorithm over popular stochastic gradient algorithms

    Margin-based Ranking and an Equivalence between AdaBoost and RankBoost

    Get PDF
    We study boosting algorithms for learning to rank. We give a general margin-based bound for ranking based on covering numbers for the hypothesis space. Our bound suggests that algorithms that maximize the ranking margin will generalize well. We then describe a new algorithm, smooth margin ranking, that precisely converges to a maximum ranking-margin solution. The algorithm is a modification of RankBoost, analogous to “approximate coordinate ascent boosting.” Finally, we prove that AdaBoost and RankBoost are equally good for the problems of bipartite ranking and classification in terms of their asymptotic behavior on the training set. Under natural conditions, AdaBoost achieves an area under the ROC curve that is equally as good as RankBoost’s; furthermore, RankBoost, when given a specific intercept, achieves a misclassification error that is as good as AdaBoost’s. This may help to explain the empirical observations made by Cortes andMohri, and Caruana and Niculescu-Mizil, about the excellent performance of AdaBoost as a bipartite ranking algorithm, as measured by the area under the ROC curve

    A Modern Introduction to Online Learning

    Full text link
    In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.Comment: Fixed more typos, added more history bits, added local norms bounds for OMD and FTR

    Federated Hypergradient Descent

    Full text link
    In this work, we explore combining automatic hyperparameter tuning and optimization for federated learning (FL) in an online, one-shot procedure. We apply a principled approach on a method for adaptive client learning rate, number of local steps, and batch size. In our federated learning applications, our primary motivations are minimizing communication budget as well as local computational resources in the training pipeline. Conventionally, hyperparameter tuning methods involve at least some degree of trial-and-error, which is known to be sample inefficient. In order to address our motivations, we propose FATHOM (Federated AuTomatic Hyperparameter OptiMization) as a one-shot online procedure. We investigate the challenges and solutions of deriving analytical gradients with respect to the hyperparameters of interest. Our approach is inspired by the fact that, with the exception of local data, we have full knowledge of all components involved in our training process, and this fact can be exploited in our algorithm impactfully. We show that FATHOM is more communication efficient than Federated Averaging (FedAvg) with optimized, static valued hyperparameters, and is also more computationally efficient overall. As a communication efficient, one-shot online procedure, FATHOM solves the bottleneck of costly communication and limited local computation, by eliminating a potentially wasteful tuning process, and by optimizing the hyperparamters adaptively throughout the training procedure without trial-and-error. We show our numerical results through extensive empirical experiments with the Federated EMNIST-62 (FEMNIST) and Federated Stack Overflow (FSO) datasets, using FedJAX as our baseline framework
    corecore