9 research outputs found

    Learning with Minimal Supervision: New Meta-Learning and Reinforcement Learning Algorithms

    Get PDF
    Standard machine learning approaches thrive on learning from huge amounts of labeled training data, but what if we don’t have access to large amounts of labeled datasets? Humans have a remarkable ability to learn from only a few examples. To do so, they either build upon their prior learning experiences, or adapt to new circumstances by observing sparse learning signals. In this dissertation, we promote algorithms that learn with minimal amounts of supervision inspired by these two ideas. We discuss two families for minimally supervised learning algorithms based on meta-learning (or learning to learn) and reinforcement learning approaches.In the first part of the dissertation, we discuss meta-learning approaches for learning with minimal supervision. We present three meta-learning algorithms for few-shot adaptation of neural machine translation systems, promoting fairness in learned models by learning to actively learn under fairness parity constraints, and learning better exploration policies in the interactive contextual bandit setting. All of these algorithms simulate settings in which the agent has access to only a few labeled samples. Based on these simulations, the agent learns how to solve future learning tasks with minimal supervision. In the second part of the dissertation, we present learning algorithms based on reinforcement and imitation learning. In many settings the learning agent doesn’t have access to fully supervised training data, however, it might be able to leverage access to a sparse reward signal, or an expert that can be queried to collect the labeled data. It is important then to utilize these learning signals efficiently. Towards achieving this goal, we present three learning algorithms for learning from very sparse reward signals, leveraging access to noisy guidance, and solving structured prediction learning tasks under bandit feedback. In all cases, the result is a minimally supervised learning algorithm that can effectively learn given access to sparse reward signals

    Algorithmes de bandits stochastiques pour la gestion de la demande Ă©lectrique

    Get PDF
    As electricity is hard to store, the balance between production and consumption must be strictly maintained. With the integration of intermittent renewable energies into the production mix, the management of the balance becomes complex. At the same time, the deployment of smart meters suggests demand response. More precisely, sending signals - such as changes in the price of electricity - would encourage users to modulate their consumption according to the production of electricity. The algorithms used to choose these signals have to learn consumer reactions and, in the same time, to optimize them (exploration-exploration trade-off). Our approach is based on bandit theory and formalizes this sequential learning problem. We propose a first algorithm to control the electrical demand of a homogeneous population of consumers and offer T⅔ upper bound on its regret. Experiments on a real data set in which price incentives were offered illustrate these theoretical results. As a “full information” dataset is required to test bandit algorithms, a consumption data generator based on variational autoencoders is built. In order to drop the assumption of the population homogeneity, we propose an approach to cluster households according to their consumption profile. These different works are finally combined to propose and test a bandit algorithm for personalized demand side management.L'électricité se stockant difficilement à grande échelle, l'équilibre entre la production et la consommation doit être rigoureusement maintenu. Une gestion par anticipation de la demande se complexifie avec l'intégration au mix de production des énergies renouvelables intermittentes. Parallèlement, le déploiement des compteurs communicants permet d'envisager un pilotage dynamique de la consommation électrique. Plus concrètement, l'envoi de signaux - tels que des changements du prix de l'électricité – permettrait d'inciter les usagers à moduler leur consommation afin qu'elle s'ajuste au mieux à la production d'électricité. Les algorithmes choisissant ces signaux devront apprendre la réaction des consommateurs face aux envois tout en les optimisant (compromis exploration-exploitation). Notre approche, fondée sur la théorie des bandits, a permis de formaliser ce problème d'apprentissage séquentiel et de proposer un premier algorithme pour piloter la demande électrique d'une population homogène de consommateurs. Une borne supérieure d'ordre T⅔ a été obtenue sur le regret de cet algorithme. Des expériences réalisées sur des données de consommation de foyers soumis à des changements dynamiques du prix de l'électricité illustrent ce résultat théorique. Un jeu de données en « information complète » étant nécessaire pour tester un algorithme de bandits, un simulateur de données de consommation fondé sur les auto-encodeurs variationnels a ensuite été construit. Afin de s'affranchir de l'hypothèse d'homogénéité de la population, une approche pour segmenter les foyers en fonction de leurs habitudes de consommation est aussi proposée. Ces différents travaux sont finalement combinés pour proposer et tester des algorithmes de bandits pour un pilotage personnalisé de la consommation électrique

    Fairness-aware Network Revenue Management with Demand Learning

    Full text link
    In addition to maximizing the total revenue, decision-makers in lots of industries would like to guarantee fair consumption across different resources and avoid saturating certain resources. Motivated by these practical needs, this paper studies the price-based network revenue management problem with both demand learning and fairness concern about the consumption across different resources. We introduce the regularized revenue, i.e., the total revenue with a fairness regularization, as our objective to incorporate fairness into the revenue maximization goal. We propose a primal-dual-type online policy with the Upper-Confidence-Bound (UCB) demand learning method to maximize the regularized revenue. We adopt several innovative techniques to make our algorithm a unified and computationally efficient framework for the continuous price set and a wide class of fairness regularizers. Our algorithm achieves a worst-case regret of O~(N5/2T)\tilde O(N^{5/2}\sqrt{T}), where NN denotes the number of products and TT denotes the number of time periods. Numerical experiments in a few NRM examples demonstrate the effectiveness of our algorithm for balancing revenue and fairness
    corecore