321 research outputs found

    Rapid mixing of Swendsen-Wang dynamics in two dimensions

    Full text link
    We prove comparison results for the Swendsen-Wang (SW) dynamics, the heat-bath (HB) dynamics for the Potts model and the single-bond (SB) dynamics for the random-cluster model on arbitrary graphs. In particular, we prove that rapid mixing of HB implies rapid mixing of SW on graphs with bounded maximum degree and that rapid mixing of SW and rapid mixing of SB are equivalent. Additionally, the spectral gap of SW and SB on planar graphs is bounded from above and from below by the spectral gap of these dynamics on the corresponding dual graph with suitably changed temperature. As a consequence we obtain rapid mixing of the Swendsen-Wang dynamics for the Potts model on the two-dimensional square lattice at all non-critical temperatures as well as rapid mixing for the two-dimensional Ising model at all temperatures. Furthermore, we obtain new results for general graphs at high or low enough temperatures.Comment: Ph.D. thesis, 66 page

    Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions

    Get PDF
    The random-cluster (FK) model is a key tool for the study of phase transitions and for the design of efficient Markov chain Monte Carlo (MCMC) sampling algorithms for the Ising/Potts model. It is well-known that in the high-temperature region beta<beta_c(q) of the q-state Ising/Potts model on an n x n box Lambda_n of the integer lattice Z^2, spin correlations decay exponentially fast; this property holds even arbitrarily close to the boundary of Lambda_n and uniformly over all boundary conditions. A direct consequence of this property is that the corresponding single-site update Markov chain, known as the Glauber dynamics, mixes in optimal O(n^2 log{n}) steps on Lambda_{n} for all choices of boundary conditions. We study the effect of boundary conditions on the FK-dynamics, the analogous Glauber dynamics for the random-cluster model. On Lambda_n the random-cluster model with parameters (p,q) has a sharp phase transition at p = p_c(q). Unlike the Ising/Potts model, the random-cluster model has non-local interactions which can be forced by boundary conditions: external wirings of boundary vertices of Lambda_n. We consider the broad and natural class of boundary conditions that are realizable as a configuration on Z^2 Lambda_n. Such boundary conditions can have many macroscopic wirings and impose long-range correlations even at very high temperatures (p 1 and p != p_c(q) the mixing time of the FK-dynamics is polynomial in n for every realizable boundary condition. Previously, for boundary conditions that do not carry long-range information (namely wired and free), Blanca and Sinclair (2017) had proved that the FK-dynamics in the same setting mixes in optimal O(n^2 log n) time. To illustrate the difficulties introduced by general boundary conditions, we also construct a class of non-realizable boundary conditions that induce slow (stretched-exponential) convergence at high temperatures

    Swendsen-Wang Algorithm on the Mean-Field Potts Model

    Full text link
    We study the qq-state ferromagnetic Potts model on the nn-vertex complete graph known as the mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site Glauber dynamics. Long et al. studied the case q=2q=2, the Swendsen-Wang algorithm for the mean-field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) Θ(1)\Theta(1) for β<βc\beta<\beta_c, (ii) Θ(n1/4)\Theta(n^{1/4}) for β=βc\beta=\beta_c, (iii) Θ(logn)\Theta(\log n) for β>βc\beta>\beta_c, where βc\beta_c is the critical temperature for the ordered/disordered phase transition. In contrast, for q3q\geq 3 there are two critical temperatures 0<βu<βrc0<\beta_u<\beta_{rc} that are relevant. We prove that the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Potts model on the nn-vertex complete graph satisfies: (i) Θ(1)\Theta(1) for β<βu\beta<\beta_u, (ii) Θ(n1/3)\Theta(n^{1/3}) for β=βu\beta=\beta_u, (iii) exp(nΩ(1))\exp(n^{\Omega(1)}) for βu<β<βrc\beta_u<\beta<\beta_{rc}, and (iv) Θ(logn)\Theta(\log{n}) for ββrc\beta\geq\beta_{rc}. These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.Comment: To appear in Random Structures & Algorithm

    Swendsen-Wang Algorithm on the Mean-Field Potts Model

    Get PDF
    We study the q-state ferromagnetic Potts model on the n-vertex complete graph known as the mean-field (Curie-Weiss) model. We analyze the Swendsen-Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single-site Glauber dynamics. The case q=2 (the Swendsen-Wang algorithm for the ferromagnetic Ising model) undergoes a slow-down at the uniqueness/non-uniqueness critical temperature for the infinite Delta-regular tree (Long et al., 2014) but yet still has polynomial mixing time at all (inverse) temperatures beta>0 (Cooper et al., 2000). In contrast for q>=3 there are two critical temperatures 0=beta_rc. These results complement refined results of Cuff et al. (2012) on the mixing time of the Glauber dynamics for the ferromagnetic Potts model. The most interesting aspect of our analysis is at the critical temperature beta=beta_u, which requires a delicate choice of a potential function to balance the conflating factors for the slow drift away from a fixed point (which is repulsive but not Jacobian repulsive): close to the fixed point the variance from the percolation step dominates and sufficiently far from the fixed point the dynamics of the size of the dominant color class takes over

    Tunneling behavior of Ising and Potts models in the low-temperature regime

    Get PDF
    We consider the ferromagnetic qq-state Potts model with zero external field in a finite volume and assume that the stochastic evolution of this system is described by a Glauber-type dynamics parametrized by the inverse temperature β\beta. Our analysis concerns the low-temperature regime β\beta \to \infty, in which this multi-spin system has qq stable equilibria, corresponding to the configurations where all spins are equal. Focusing on grid graphs with various boundary conditions, we study the tunneling phenomena of the qq-state Potts model. More specifically, we describe the asymptotic behavior of the first hitting times between stable equilibria as β\beta \to \infty in probability, in expectation, and in distribution and obtain tight bounds on the mixing time as side-result. In the special case q=2q=2, our results characterize the tunneling behavior of the Ising model on grid graphs.Comment: 13 figure

    The Swendsen-Wang Dynamics on Trees

    Get PDF
    The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult to analyze, due in part to the global nature of its updates. We present optimal bounds on the convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov chains by Martinelli et al. (2003), imply ?(1) spectral gap and O(log n) mixing time, respectively, for the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically optimal. As a consequence, we establish ?(log n) mixing for the Swendsen-Wang dynamics for all boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by several recent rapid mixing results on high-dimensional expanders and utilize recent work on block factorization of entropy under spatial mixing conditions
    corecore