442 research outputs found

    Event sampled optimal adaptive regulation of linear and a class of nonlinear systems

    Get PDF
    In networked control systems (NCS), wherein a communication network is used to close the feedback loop, the transmission of feedback signals and execution of the controller is currently carried out at periodic sampling instants. Thus, this scheme requires a significant computational power and network bandwidth. In contrast, the event-based aperiodic sampling and control, which is introduced recently, appears to relieve the computational burden and high network resource utilization. Therefore, in this dissertation, a suite of novel event sampled adaptive regulation schemes in both discrete and continuous time domain for uncertain linear and nonlinear systems are designed. Event sampled Q-learning and adaptive/neuro dynamic programming (ADP) schemes without value and policy iterations are utilized for the linear and nonlinear systems, respectively, in both the time domains. Neural networks (NN) are employed as approximators for nonlinear systems and, hence, the universal approximation property of NN in the event-sampled framework is introduced. The tuning of the parameters and the NN weights are carried out in an aperiodic manner at the event sampled instants leading to a further saving in computation when compared to traditional NN based control. The adaptive regulator when applied on a linear NCS with time-varying network delays and packet losses shows a 30% and 56% reduction in computation and network bandwidth usage, respectively. In case of nonlinear NCS with event sampled ADP based regulator, a reduction of 27% and 66% is observed when compared to periodic sampled schemes. The sampling and transmission instants are determined through adaptive event sampling conditions derived using Lyapunov technique by viewing the closed-loop event sampled linear and nonlinear systems as switched and/or impulsive dynamical systems. --Abstract, page iii

    Exponential Stability of Linear Discrete Systems with Variable Delays via Lyapunov Second Method

    Get PDF
    The paper investigates the exponential stability of a linear system of difference equations with variable delays xk+1=Axk+∑i=1sBikxk-mik, k=0,1,… , where s∈N, A is a constant square matrix, Bik are square matrices, mik∈N∪0, and mik≤m for an m∈N. New criteria for exponential stability are derived using the method of Lyapunov functions and formulated in terms of the norms of matrices of linear terms and matrices solving an auxiliary Lyapunov equation. An exponential-type estimate of the norm of solutions is given as well. The efficiency of the derived criteria is numerically demonstrated by examples and their relations to the well-known results are discussed

    On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks

    Get PDF
    summary:This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Some Differential Inequalities on Time Scales and Their Applications to Feedback Control Systems

    Get PDF
    This paper deals with feedback control systems on time scales. Firstly, we generalize the semicycle concept to time scales and then establish some differential inequalities on time scales. Secondly, as applications of these inequalities, we study the uniform ultimate boundedness of solutions of these systems. We give a new method to investigate the permanence of ecosystem on time scales. And some known results have been generalized. Finally, an example is given to support the result
    corecore