1,246 research outputs found

    Exponential synchronization for reaction-diffusion neural networks with mixed time-varying delays via periodically intermittent control

    Get PDF
    This paper deals with the exponential synchronization problem for reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance. By using stochastic analysis approaches and constructing a novel Lyapunov–Krasovskii functional, a periodically intermittent controller is first proposed to guarantee the exponential synchronization of reaction-diffusion neural networks with mixed time-varying delays and stochastic disturbance in terms of p-norm. The obtained synchronization results are easy to check and improve upon the existing ones. Particularly, the traditional assumptions on control width and time-varying delays are removed in this paper. This paper also presents two illustrative examples and uses simulated results of these examples to show the feasibility and effectiveness of the proposed scheme

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Synchronization of chaotic delayed systems via intermittent control and its adaptive strategy

    Get PDF
    In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme

    Periodically intermittent control strategies for α-exponential stabilization of fractional-order complex-valued delayed neural networks

    Get PDF
    This paper studies the global α-exponential stabilization of a kind of fractional-order neural networks with time delay in complex-valued domain. To end this, several useful fractional-order differential inequalities are set up, which generalize and improve the existing results. Then, a suitable periodically intermittent control scheme with time delay is put forward for the global α-exponential stabilization of the addressed networks, which include feedback control as a special case. Utilizing these useful fractional-order differential inequalities and combining with the Lyapunov approach and other inequality techniques, some novel delay-independent criteria in terms of real-valued algebraic inequalities are obtained to ensure global α-exponential stabilization of the discussed networks, which are very simple to implement in practice and avert to calculate the complex matrix inequalities. Finally, the availability of the theoretical criteria is verified by an illustrative example with simulations.The National Natural Science Foundation of China (11601268)http://link.springer.com/journal/110712019-04-01hj2018Electrical, Electronic and Computer Engineerin

    Robust Exponential Stabilization of Stochastic Delay Interval Recurrent Neural Networks with Distributed Parameters and Markovian Jumping by Using Periodically Intermittent Control

    Get PDF
    We consider a class of stochastic delay recurrent neural networks with distributed parameters and Markovian jumping. It is assumed that the coefficients in these neural networks belong to the interval matrices. Several sufficient conditions ensuring robust exponential stabilization are derived by using periodically intermittent control and Lyapunov functional. The obtained results are very easy to verify and implement, and improve the existing results. Finally, an example with numerical simulations is given to illustrate the presented criteria
    corecore