19 research outputs found

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Stability Analysis of Stochastic Markovian Jump Neural Networks with Different Time Scales and Randomly Occurred Nonlinearities Based on Delay-Partitioning Projection Approach

    Get PDF
    In this paper, the mean square asymptotic stability of stochastic Markovian jump neural networks with different time scales and randomly occurred nonlinearities is investigated. In terms of linear matrix inequality (LMI) approach and delay-partitioning projection technique, delay-dependent stability criteria are derived for the considered neural networks for cases with or without the information of the delay rates via new Lyapunov-Krasovskii functionals. We also obtain that the thinner the delay is partitioned, the more obviously the conservatism can be reduced. An example with simulation results is given to show the effectiveness of the proposed approach

    Sliding intermittent control for BAM neural networks with delays

    Get PDF
    Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/615947 Open AccessThis paper addresses the exponential stability problem for a class of delayed bidirectional associative memory (BAM) neural networks with delays. A sliding intermittent controller which takes the advantages of the periodically intermittent control idea and the impulsive control scheme is proposed and employed to the delayed BAM system. With the adjustable parameter taking different particular values, such a sliding intermittent control method can comprise several kinds of control schemes as special cases, such as the continuous feedback control, the impulsive control, the periodically intermittent control, and the semi-impulsive control. By using analysis techniques and the Lyapunov function methods, some sufficient criteria are derived for the closed-loop delayed BAM neural networks to be globally exponentially stable. Finally, two illustrative examples are given to show the effectiveness of the proposed control scheme and the obtained theoretical results

    Stability of Stochastic Discrete-Time Neural Networks with Discrete Delays and the Leakage Delay

    Get PDF
    This paper investigates the stability of stochastic discrete-time neural networks (NNs) with discrete time-varying delays and leakage delay. As the partition of time-varying and leakage delay is brought in the discrete-time system, we construct a novel LyapunovKrasovskii function based on stability theory. Furthermore sufficient conditions are derived to guarantee the global asymptotic stability of the equilibrium point. Numerical example is given to demonstrate the effectiveness of the proposed method and the applicability of the proposed method

    Exponential stability for markovian jumping stochastic BAM neural networks with mode-dependent probabilistic time-varying delays and impulse control

    Full text link
    AbstractIn this article, an exponential stability analysis of Markovian jumping stochastic bidirectional associative memory (BAM) neural networks with mode-dependent probabilistic time-varying delays and impulsive control is investigated. By establishment of a stochastic variable with Bernoulli distribution, the information of probabilistic time-varying delay is considered and transformed into one with deterministic time-varying delay and stochastic parameters. By fully taking the inherent characteristic of such kind of stochastic BAM neural networks into account, a novel Lyapunov-Krasovskii functional is constructed with as many as possible positive definite matrices which depends on the system mode and a triple-integral term is introduced for deriving the delay-dependent stability conditions. Furthermore, mode-dependent mean square exponential stability criteria are derived by constructing a new Lyapunov-Krasovskii functional with modes in the integral terms and using some stochastic analysis techniques. The criteria are formulated in terms of a set of linear matrix inequalities, which can be checked efficiently by use of some standard numerical packages. Finally, numerical examples and its simulations are given to demonstrate the usefulness and effectiveness of the proposed results.<br /
    corecore