571 research outputs found

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    Approximation Limits of Linear Programs (Beyond Hierarchies)

    Full text link
    We develop a framework for approximation limits of polynomial-size linear programs from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any linear program as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n^{1/2-eps})-approximations for CLIQUE require linear programs of size 2^{n^\Omega(eps)}. (This lower bound applies to linear programs using a certain encoding of CLIQUE as a linear optimization problem.) Moreover, we establish a similar result for approximations of semidefinite programs by linear programs. Our main ingredient is a quantitative improvement of Razborov's rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of certain perturbations of the unique disjointness matrix.Comment: 23 pages, 2 figure

    Some upper and lower bounds on PSD-rank

    Get PDF
    Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial optimization and communication complexity. We first study several basic properties of PSD-rank, and then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are based on viewing a positive semidefinite factorization of a matrix MM as a quantum communication protocol. These lower bounds depend on the entries of the matrix and not only on its support (the zero/nonzero pattern), overcoming a limitation of some previous techniques. We compare these new lower bounds with known bounds, and give examples where the new ones are better. As an application we determine the PSD-rank of (approximations of) some common matrices.Comment: 21 page

    Lower bounds on the size of semidefinite programming relaxations

    Full text link
    We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on nn-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than 2nc2^{n^c}, for some constant c>0c > 0. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-O(1)O(1) sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT

    Computing approximate PSD factorizations

    Get PDF
    We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.Comment: 10 page

    Algorithms for Positive Semidefinite Factorization

    Full text link
    This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an mm-by-nn nonnegative matrix XX and an integer kk, the PSD factorization problem consists in finding, if possible, symmetric kk-by-kk positive semidefinite matrices {A1,...,Am}\{A^1,...,A^m\} and {B1,...,Bn}\{B^1,...,B^n\} such that Xi,j=trace(AiBj)X_{i,j}=\text{trace}(A^iB^j) for i=1,...,mi=1,...,m, and j=1,...nj=1,...n. PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size k=1+log2(n)k=1+ \lceil \log_2(n) \rceil for the regular nn-gons when n=5n=5, 88 and 1010. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices AiA^i and BjB^j have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality Ai=BiA^i=B^i is required for all ii).Comment: 21 pages, 3 figures, 3 table

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs

    Lifts of convex sets and cone factorizations

    Get PDF
    In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or 'lift' of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equivalent to the existence of a factorization of an operator associated to the set and its polar via elements in the cone and its dual. This generalizes a theorem of Yannakakis that established a connection between polyhedral lifts of a polytope and nonnegative factorizations of its slack matrix. Symmetric lifts of convex sets can also be characterized similarly. When the cones live in a family, our results lead to the definition of the rank of a convex set with respect to this family. We present results about this rank in the context of cones of positive semidefinite matrices. Our methods provide new tools for understanding cone lifts of convex sets.Comment: 20 pages, 2 figure
    corecore