42,476 research outputs found

    Further Results on Lyapunov Functions for Slowly Time-Varying Systems

    Full text link
    We provide general methods for explicitly constructing strict Lyapunov functions for fully nonlinear slowly time-varying systems. Our results apply to cases where the given dynamics and corresponding frozen dynamics are not necessarily exponentially stable. This complements our previous Lyapunov function constructions for rapidly time-varying dynamics. We also explicitly construct input-to-state stable Lyapunov functions for slowly time-varying control systems. We illustrate our findings by constructing explicit Lyapunov functions for a pendulum model, an example from identification theory, and a perturbed friction model.Comment: Accepted for publication in Mathematics of Control, Signals, and Systems (MCSS) on November 20, 200

    A global observer for attitude and gyro biases from vector measurements

    Full text link
    We consider the classical problem of estimating the attitude and gyro biases of a rigid body from vector measurements and a triaxial rate gyro. We propose a simple "geometry-free" nonlinear observer with guaranteed uniform global asymptotic convergence and local exponential convergence; the stability analysis, which relies on a strict Lyapunov function, is rather simple. The excellent behavior of the observer is illustrated through a detailed numerical simulation

    μ-Dependent model reduction for uncertain discrete-time switched linear systems with average dwell time

    Get PDF
    In this article, the model reduction problem for a class of discrete-time polytopic uncertain switched linear systems with average dwell time switching is investigated. The stability criterion for general discrete-time switched systems is first explored, and a μ-dependent approach is then introduced for the considered systems to the model reduction solution. A reduced-order model is constructed and its corresponding existence conditions are derived via LMI formulation. The admissible switching signals and the desired reduced model matrices are accordingly obtained from such conditions such that the resulting model error system is robustly exponentially stable and has an exponential H∞ performance. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results

    Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations

    Full text link
    The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the evolution of slowly varying wave packets in nonlinear dissipative media. A front (shock) is a transient layer between a plane-wave state and a zero background. We report exact solutions for domain walls, i.e., pairs of fronts with opposite polarities, in a system of two coupled CGLEs, which describe transient layers between semi-infinite domains occupied by each component in the absence of the other one. For this purpose, a modified Hirota bilinear operator, first proposed by Bekki and Nozaki, is employed. A novel factorization procedure is applied to reduce the intermediate calculations considerably. The ensuing system of equations for the amplitudes and frequencies is solved by means of computer-assisted algebra. Exact solutions for mutually-locked front pairs of opposite polarities, with one or several free parameters, are thus generated. The signs of the cubic gain/loss, linear amplification/attenuation, and velocity of the coupled-front complex can be adjusted in a variety of configurations. Numerical simulations are performed to study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres

    Adiabatic stability under semi-strong interactions: The weakly damped regime

    Get PDF
    We rigorously derive multi-pulse interaction laws for the semi-strong interactions in a family of singularly-perturbed and weakly-damped reaction-diffusion systems in one space dimension. Most significantly, we show the existence of a manifold of quasi-steady N-pulse solutions and identify a "normal-hyperbolicity" condition which balances the asymptotic weakness of the linear damping against the algebraic evolution rate of the multi-pulses. Our main result is the adiabatic stability of the manifolds subject to this normal hyperbolicity condition. More specifically, the spectrum of the linearization about a fixed N-pulse configuration contains essential spectrum that is asymptotically close to the origin as well as semi-strong eigenvalues which move at leading order as the pulse positions evolve. We characterize the semi-strong eigenvalues in terms of the spectrum of an explicit N by N matrix, and rigorously bound the error between the N-pulse manifold and the evolution of the full system, in a polynomially weighted space, so long as the semi-strong spectrum remains strictly in the left-half complex plane, and the essential spectrum is not too close to the origin

    Complex Dynamics and Synchronization of Delayed-Feedback Nonlinear Oscillators

    Full text link
    We describe a flexible and modular delayed-feedback nonlinear oscillator that is capable of generating a wide range of dynamical behaviours, from periodic oscillations to high-dimensional chaos. The oscillator uses electrooptic modulation and fibre-optic transmission, with feedback and filtering implemented through real-time digital-signal processing. We consider two such oscillators that are coupled to one another, and we identify the conditions under which they will synchronize. By examining the rates of divergence or convergence between two coupled oscillators, we quantify the maximum Lyapunov exponents or transverse Lyapunov exponents of the system, and we present an experimental method to determine these rates that does not require a mathematical model of the system. Finally, we demonstrate a new adaptive control method that keeps two oscillators synchronized even when the coupling between them is changing unpredictably.Comment: 24 pages, 13 figures. To appear in Phil. Trans. R. Soc. A (special theme issue to accompany 2009 International Workshop on Delayed Complex Systems

    A Comparison of LPV Gain Scheduling and Control Contraction Metrics for Nonlinear Control

    Full text link
    Gain-scheduled control based on linear parameter-varying (LPV) models derived from local linearizations is a widespread nonlinear technique for tracking time-varying setpoints. Recently, a nonlinear control scheme based on Control Contraction Metrics (CCMs) has been developed to track arbitrary admissible trajectories. This paper presents a comparison study of these two approaches. We show that the CCM based approach is an extended gain-scheduled control scheme which achieves global reference-independent stability and performance through an exact control realization which integrates a series of local LPV controllers on a particular path between the current and reference states.Comment: IFAC LPVS 201
    • …
    corecore