10,224 research outputs found

    State bounding for positive coupled differential - difference equations with bounded disturbances

    Full text link
    In this paper, the problem of finding state bounds is considered, for the first time, for a class of positive time-delay coupled differential-difference equations (CDDEs) with bounded disturbances. First, we present a novel method, which is based on nonnegative matrices and optimization techniques, for computing a like-exponential componentwise upper bound of the state vector of the CDDEs without disturbances. The main idea is to establish bounds of the state vector on finite-time intervals and then, by using the solution comparison method and the linearity of the system, extend to infinite time horizon. Next, by using state transformations, we extend the obtained results to a class of CDDEs with bounded disturbances. As a result, componentwise upper bounds, ultimate bounds and invariant set of the perturbed system are obtained. The feasibility of obtained results are illustrated through a numerical example.Comment: 24 pages, 5 figure

    Stability and performance analysis of linear positive systems with delays using input-output methods

    Full text link
    It is known that input-output approaches based on scaled small-gain theorems with constant DD-scalings and integral linear constraints are non-conservative for the analysis of some classes of linear positive systems interconnected with uncertain linear operators. This dramatically contrasts with the case of general linear systems with delays where input-output approaches provide, in general, sufficient conditions only. Using these results we provide simple alternative proofs for many of the existing results on the stability of linear positive systems with discrete/distributed/neutral time-invariant/-varying delays and linear difference equations. In particular, we give a simple proof for the characterization of diagonal Riccati stability for systems with discrete-delays and generalize this equation to other types of delay systems. The fact that all those results can be reproved in a very simple way demonstrates the importance and the efficiency of the input-output framework for the analysis of linear positive systems. The approach is also used to derive performance results evaluated in terms of the L1L_1-, L2L_2- and LL_\infty-gains. It is also flexible enough to be used for design purposes.Comment: 34 page

    Shaping state and time-dependent convergence rates in non-linear control and observer design

    Full text link
    This paper derives for non-linear, time-varying and feedback linearizable systems simple controller designs to achieve specified state-and timedependent complex convergence rates. This approach can be regarded as a general gain-scheduling technique with global exponential stability guarantee. Typical applications include the transonic control of an aircraft with strongly Mach or time-dependent eigenvalues or the state-dependent complex eigenvalue placement of the inverted pendulum. As a generalization of the LTI Luenberger observer a dual observer design technique is derived for a broad set of non-linear and time-varying systems, where so far straightforward observer techniques were not known. The resulting observer design is illustrated for non-linear chemical plants, the Van-der-Pol oscillator, the discrete logarithmic map series prediction and the lighthouse navigation problem. These results [23] allow one to shape globally the state- and time-dependent convergence behaviour ideally suited to the non-linear or time-varying system. The technique can also be used to provide analytic robustness guarantees against modelling uncertainties. The derivations are based on non-linear contraction theory [18], a comparatively recent dynamic system analysis tool whose results will be reviewed and extended

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German

    Solutions of Higher Order Homogeneous Linear Matrix Differential Equations: Singular Case

    Full text link
    The main objective of this talk is to develop a matrix pencil approach for the study of an initial value problem of a class of singular linear matrix differential equations whose coefficients are constant matrices. By using matrix pencil theory we study the cases of non square matrices and of square matrices with an identically zero matrix pencil. Furthermore we will give necessary and sufficient conditions for existence and uniqueness of solutions and we will see when the uniqueness of solutions is not valid. Moreover we provide a numerical example

    Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications

    Full text link
    Systems of reaction-diffusion partial differential equations (RD-PDEs) are widely applied for modelling life science and physico-chemical phenomena. In particular, the coupling between diffusion and nonlinear kinetics can lead to the so-called Turing instability, giving rise to a variety of spatial patterns (like labyrinths, spots, stripes, etc.) attained as steady state solutions for large time intervals. To capture the morphological peculiarities of the pattern itself, a very fine space discretization may be required, limiting the use of standard (vector-based) ODE solvers in time because of excessive computational costs. We show that the structure of the diffusion matrix can be exploited so as to use matrix-based versions of time integrators, such as Implicit-Explicit (IMEX) and exponential schemes. This implementation entails the solution of a sequence of discrete matrix problems of significantly smaller dimensions than in the vector case, thus allowing for a much finer problem discretization. We illustrate our findings by numerically solving the Schnackenberg model, prototype of RD-PDE systems with Turing pattern solutions, and the DIB-morphochemical model describing metal growth during battery charging processes.Comment: 26 pages, 9 figures, 2 table

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory

    A Convex Sum-of-Squares Approach to Analysis, State Feedback and Output Feedback Control of Parabolic PDEs

    Full text link
    We present an optimization-based framework for analysis and control of linear parabolic partial differential equations (PDEs) with spatially varying coefficients without discretization or numerical approximation. For controller synthesis, we consider both full-state feedback and point observation (output feedback). The input occurs at the boundary (point actuation). We use positive matrices to parameterize positive Lyapunov functions and polynomials to parameterize controller and observer gains. We use duality and an invertible state-variable transformation to convexify the controller synthesis problem. Finally, we combine our synthesis condition with the Luenberger observer framework to express the output feedback controller synthesis problem as a set of LMI/SDP constraints. We perform an extensive set of numerical experiments to demonstrate accuracy of the conditions and to prove necessity of the Lyapunov structures chosen. We provide numerical and analytical comparisons with alternative approaches to control including Sturm Liouville theory and backstepping. Finally we use numerical tests to show that the method retains its accuracy for alternative boundary conditions.Comment: arXiv admin note: text overlap with arXiv:1408.520

    Interval Linear Algebra and Computational Complexity

    Full text link
    This work connects two mathematical fields - computational complexity and interval linear algebra. It introduces the basic topics of interval linear algebra - regularity and singularity, full column rank, solving a linear system, deciding solvability of a linear system, computing inverse matrix, eigenvalues, checking positive (semi)definiteness or stability. We discuss these problems and relations between them from the view of computational complexity. Many problems in interval linear algebra are intractable, hence we emphasize subclasses of these problems that are easily solvable or decidable. The aim of this work is to provide a basic insight into this field and to provide materials for further reading and research.Comment: Submitted to Mat Triad 201

    Mean sqaure synchronization in large scale nonlinear networks with uncertain links

    Full text link
    In this paper, we study the problem of synchronization with stochastic interaction among network components. The network components dynamics is nonlinear and modeled in Lure form with linear stochastic interaction among network components. To study this problem we first prove the stochastic version of Positive Real Lemma (PRL). The stochastic PRL result is then used to provide sufficient condition for synchronization of stochastic network system. The sufficiency condition for synchronization, is a function of nominal (mean) coupling Laplacian eigenvalues and the statistics of link uncertainty in the form of coefficient of dispersion (CoD). Contrary to the existing literature on network synchronization, our results indicate that both the largest and the second smallest eigenvalue of the mean Laplacian play an important role in synchronization of stochastic networks. Robust control-based small-gain interpretation is provided for the derived sufficiency condition which allow us to define the margin of synchronization. The margin of synchronization is used to understand the important tradeoff between the component dynamics, network topology, and uncertainty characteristics. For a special class of network system connected over torus topology we provide an analytical expression for the tradeoff between the number of neighbors and the dimension of the torus. Similarly, by exploiting the identical nature of component dynamics computationally efficient sufficient condition independent of network size is provided for general class of network system. Simulation results for network of coupled oscillators with stochastic link uncertainty are presented to verify the developed theoretical framework
    corecore