2,080 research outputs found

    Exponential Replication of Patterns in the Signal Tile Assembly Model

    Get PDF
    Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly

    Exponential replication of patterns in the Signal Tile Assembly Model and experimental non-deterministic assembly of lines in the Probabilistic Tile Assembly Model

    Get PDF
    We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM), which is an extension of the aTAM. In the first part of this thesis, we construct an exponential pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size ϕ with O(ϕ) tile types, O(ϕ) unique glues, and a signal complexity of O(1). In the second part of this thesis, we use a non-deterministic model of tile assembly to significantly reduce the tile complexity of specified-length linear assemblies, which are a particularly important substructure for building more complicated nanostructures

    How crystals that sense and respond to their environments could evolve

    Get PDF
    An enduring mystery in biology is how a physical entity simple enough to have arisen spontaneously could have evolved into the complex life seen on Earth today. Cairns-Smith has proposed that life might have originated in clays which stored genomes consisting of an arrangement of crystal monomers that was replicated during growth. While a clay genome is simple enough to have conceivably arisen spontaneously, it is not obvious how it might have produced more complex forms as a result of evolution. Here, we examine this possibility in the tile assembly model, a generalized model of crystal growth that has been used to study the self-assembly of DNA tiles. We describe hypothetical crystals for which evolution of complex crystal sequences is driven by the scarceness of resources required for growth. We show how, under certain circumstances, crystal growth that performs computation can predict which resources are abundant. In such cases, crystals executing programs that make these predictions most accurately will grow fastest. Since crystals can perform universal computation, the complexity of computation that can be used to optimize growth is unbounded. To the extent that lessons derived from the tile assembly model might be applicable to mineral crystals, our results suggest that resource scarcity could conceivably have provided the evolutionary pressures necessary to produce complex clay genomes that sense and respond to changes in their environment

    Algorithms in Abstract DNA Self Assembly

    Get PDF
    For the past two years, I have always been working on the topic of Abstract DNA Tiles Self-Assembly. This is a very new area, driven by the interest of DNA molecules. The feature that the system composed by DNA molecules can be a highly parallelized system, make it much more powerful when comparing with the traditional methods. This thesis will introduce the concept of abstract DNA self-assembly models as well as some interesting problems and their solutions

    Size-Dependent Tile Self-Assembly: Constant-Height Rectangles and Stability

    Full text link
    We introduce a new model of algorithmic tile self-assembly called size-dependent assembly. In previous models, supertiles are stable when the total strength of the bonds between any two halves exceeds some constant temperature. In this model, this constant temperature requirement is replaced by an nondecreasing temperature function τ:NN\tau : \mathbb{N} \rightarrow \mathbb{N} that depends on the size of the smaller of the two halves. This generalization allows supertiles to become unstable and break apart, and captures the increased forces that large structures may place on the bonds holding them together. We demonstrate the power of this model in two ways. First, we give fixed tile sets that assemble constant-height rectangles and squares of arbitrary input size given an appropriate temperature function. Second, we prove that deciding whether a supertile is stable is coNP-complete. Both results contrast with known results for fixed temperature.Comment: In proceedings of ISAAC 201

    Self-Replication via Tile Self-Assembly (Extended Abstract)

    Get PDF
    In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model (STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues based on the binding of other glues. These modifications consist of an extension to 3D, the ability of tiles to form "flexible" bonds that allow bound tiles to rotate relative to each other, and allowing tiles of multiple shapes within the same system. We call this new model the STAM*, and we present a series of constructions within it that are capable of self-replicating behavior. Namely, the input seed assemblies to our STAM* systems can encode either "genomes" specifying the instructions for building a target shape, or can be copies of the target shape with instructions built in. A universal tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite copies of the genome as well as the target shape. An input target structure, on the other hand, can be "deconstructed" by the universal tile set to form a genome encoding it, which will then replicate and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the genomes for these constructions are proportional to the number of points in the target shape, we also present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes required. The main goals of this work are to examine minimal requirements of self-assembling systems capable of self-replicating behavior, with the aim of better understanding self-replication in nature as well as understanding the complexity of mimicking it

    Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time

    Get PDF
    We describe a computational model for studying the complexity of self-assembled structures with active molecular components. Our model captures notions of growth and movement ubiquitous in biological systems. The model is inspired by biology's fantastic ability to assemble biomolecules that form systems with complicated structure and dynamics, from molecular motors that walk on rigid tracks and proteins that dynamically alter the structure of the cell during mitosis, to embryonic development where large-scale complicated organisms efficiently grow from a single cell. Using this active self-assembly model, we show how to efficiently self-assemble shapes and patterns from simple monomers. For example, we show how to grow a line of monomers in time and number of monomer states that is merely logarithmic in the length of the line. Our main results show how to grow arbitrary connected two-dimensional geometric shapes and patterns in expected time that is polylogarithmic in the size of the shape, plus roughly the time required to run a Turing machine deciding whether or not a given pixel is in the shape. We do this while keeping the number of monomer types logarithmic in shape size, plus those monomers required by the Kolmogorov complexity of the shape or pattern. This work thus highlights the efficiency advantages of active self-assembly over passive self-assembly and motivates experimental effort to construct general-purpose active molecular self-assembly systems

    Universal Shape Replicators via Self-Assembly with Attractive and Repulsive Forces

    Get PDF
    We show how to design a universal shape replicator in a self- assembly system with both attractive and repulsive forces. More precisely, we show that there is a universal set of constant-size objects that, when added to any unknown holefree polyomino shape, produces an unbounded number of copies of that shape (plus constant-size garbage objects). The constant-size objects can be easily constructed from a constant number of individual tile types using a constant number of preprocessing self-assembly steps. Our construction uses the well-studied 2-Handed Assembly Model (2HAM) of tile self-assembly, in the simple model where glues interact only with identical glues, allowing glue strengths that are either positive (attractive) or negative (repulsive), and constant temperature (required glue strength for parts to hold together). We also require that the given shape has specified glue types on its surface, and that the feature size (smallest distance between nonincident edges) is bounded below by a constant. Shape replication necessarily requires a self-assembly model where parts can both attach and detach, and this construction is the first to do so using the natural model of negative/repulsive glues (also studied before for other problems such as fuel-efficient computation); previous replication constructions require more powerful global operations such as an “enzyme” that destroys a subset of the tile types.National Science Foundation (U.S.) (Grant EFRI1240383)National Science Foundation (U.S.) (Grant CCF-1138967

    Universal Shape Replicators via Self-Assembly with Attractive and Repulsive Forces

    Get PDF
    We show how to design a universal shape replicator in a self- assembly system with both attractive and repulsive forces. More precisely, we show that there is a universal set of constant-size objects that, when added to any unknown holefree polyomino shape, produces an unbounded number of copies of that shape (plus constant-size garbage objects). The constant-size objects can be easily constructed from a constant number of individual tile types using a constant number of preprocessing self-assembly steps. Our construction uses the well-studied 2-Handed Assembly Model (2HAM) of tile self-assembly, in the simple model where glues interact only with identical glues, allowing glue strengths that are either positive (attractive) or negative (repulsive), and constant temperature (required glue strength for parts to hold together). We also require that the given shape has specified glue types on its surface, and that the feature size (smallest distance between nonincident edges) is bounded below by a constant. Shape replication necessarily requires a self-assembly model where parts can both attach and detach, and this construction is the first to do so using the natural model of negative/repulsive glues (also studied before for other problems such as fuel-efficient computation); previous replication constructions require more powerful global operations such as an “enzyme” that destroys a subset of the tile types.National Science Foundation (U.S.) (Grant EFRI1240383)National Science Foundation (U.S.) (Grant CCF-1138967

    Self-Assembly of Tiles: Theoretical Models, the Power of Signals, and Local Computing

    Get PDF
    DNA-based self-assembly is an autonomous process whereby a disordered system of DNA sequences forms an organized structure or pattern as a consequence of Watson-Crick complementarity of DNA sequences, without external direction. Here, we propose self-assembly (SA) hypergraph automata as an automata-theoretic model for patterned self-assembly. We investigate the computational power of SA-hypergraph automata and show that for every recognizable picture language, there exists an SA-hypergraph automaton that accepts this language. Conversely, we prove that for any restricted SA-hypergraph automaton, there exists a Wang Tile System, a model for recognizable picture languages, that accepts the same language. Moreover, we investigate the computational power of some variants of the Signal-passing Tile Assembly Model (STAM), as well as propose the concept of {\it Smart Tiles}, i.e., tiles with glues that can be activated or deactivated by signals, and which possess a limited amount of local computing capability. We demonstrate the potential of smart tiles to perform some robotic tasks such as replicating complex shapes
    corecore