22,119 research outputs found

    Exponential Moving Average Model in Parallel Speech Recognition Training

    Full text link
    As training data rapid growth, large-scale parallel training with multi-GPUs cluster is widely applied in the neural network model learning currently.We present a new approach that applies exponential moving average method in large-scale parallel training of neural network model. It is a non-interference strategy that the exponential moving average model is not broadcasted to distributed workers to update their local models after model synchronization in the training process, and it is implemented as the final model of the training system. Fully-connected feed-forward neural networks (DNNs) and deep unidirectional Long short-term memory (LSTM) recurrent neural networks (RNNs) are successfully trained with proposed method for large vocabulary continuous speech recognition on Shenma voice search data in Mandarin. The character error rate (CER) of Mandarin speech recognition further degrades than state-of-the-art approaches of parallel training.Comment: 5 page

    Frame Stacking and Retaining for Recurrent Neural Network Acoustic Model

    Full text link
    Frame stacking is broadly applied in end-to-end neural network training like connectionist temporal classification (CTC), and it leads to more accurate models and faster decoding. However, it is not well-suited to conventional neural network based on context-dependent state acoustic model, if the decoder is unchanged. In this paper, we propose a novel frame retaining method which is applied in decoding. The system which combined frame retaining with frame stacking could reduces the time consumption of both training and decoding. Long short-term memory (LSTM) recurrent neural networks (RNNs) using it achieve almost linear training speedup and reduces relative 41\% real time factor (RTF). At the same time, recognition performance is no degradation or improves sightly on Shenma voice search dataset in Mandarin.Comment: 5 page

    Semi-supervised and Population Based Training for Voice Commands Recognition

    Full text link
    We present a rapid design methodology that combines automated hyper-parameter tuning with semi-supervised training to build highly accurate and robust models for voice commands classification. Proposed approach allows quick evaluation of network architectures to fit performance and power constraints of available hardware, while ensuring good hyper-parameter choices for each network in real-world scenarios. Leveraging the vast amount of unlabeled data with a student/teacher based semi-supervised method, classification accuracy is improved from 84% to 94% in the validation set. For model optimization, we explore the hyper-parameter space through population based training and obtain an optimized model in the same time frame as it takes to train a single model

    Collaborative Deep Learning Across Multiple Data Centers

    Full text link
    Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasible to transfer all data to a centralized data center due to not only bandwidth limitation but also the constraints of privacy regulations. Model averaging is a conventional choice for data parallelized training, but its ineffectiveness is claimed by previous studies as deep neural networks are often non-convex. In this paper, we argue that model averaging can be effective in the decentralized environment by using two strategies, namely, the cyclical learning rate and the increased number of epochs for local model training. With the two strategies, we show that model averaging can provide competitive performance in the decentralized mode compared to the data-centralized one. In a practical environment with multiple data centers, we conduct extensive experiments using state-of-the-art deep network architectures on different types of data. Results demonstrate the effectiveness and robustness of the proposed method.Comment: Submitted to AAAI 201

    Efficient Low-rank Multimodal Fusion with Modality-Specific Factors

    Full text link
    Multimodal research is an emerging field of artificial intelligence, and one of the main research problems in this field is multimodal fusion. The fusion of multimodal data is the process of integrating multiple unimodal representations into one compact multimodal representation. Previous research in this field has exploited the expressiveness of tensors for multimodal representation. However, these methods often suffer from exponential increase in dimensions and in computational complexity introduced by transformation of input into tensor. In this paper, we propose the Low-rank Multimodal Fusion method, which performs multimodal fusion using low-rank tensors to improve efficiency. We evaluate our model on three different tasks: multimodal sentiment analysis, speaker trait analysis, and emotion recognition. Our model achieves competitive results on all these tasks while drastically reducing computational complexity. Additional experiments also show that our model can perform robustly for a wide range of low-rank settings, and is indeed much more efficient in both training and inference compared to other methods that utilize tensor representations.Comment: * Equal contribution. 10 pages. Accepted by ACL 201

    Federated Learning for Keyword Spotting

    Full text link
    We propose a practical approach based on federated learning to solve out-of-domain issues with continuously running embedded speech-based models such as wake word detectors. We conduct an extensive empirical study of the federated averaging algorithm for the "Hey Snips" wake word based on a crowdsourced dataset that mimics a federation of wake word users. We empirically demonstrate that using an adaptive averaging strategy inspired from Adam in place of standard weighted model averaging highly reduces the number of communication rounds required to reach our target performance. The associated upstream communication costs per user are estimated at 8 MB, which is a reasonable in the context of smart home voice assistants. Additionally, the dataset used for these experiments is being open sourced with the aim of fostering further transparent research in the application of federated learning to speech data.Comment: Accepted for publication to ICASSP 201

    gpuRIR: A Python Library for Room Impulse Response Simulation with GPU Acceleration

    Full text link
    The Image Source Method (ISM) is one of the most employed techniques to calculate acoustic Room Impulse Responses (RIRs), however, its computational complexity grows fast with the reverberation time of the room and its computation time can be prohibitive for some applications where a huge number of RIRs are needed. In this paper, we present a new implementation that dramatically improves the computation speed of the ISM by using Graphic Processing Units (GPUs) to parallelize both the simulation of multiple RIRs and the computation of the images inside each RIR. Additional speedups were achieved by exploiting the mixed precision capabilities of the newer GPUs and by using lookup tables. We provide a Python library under GNU license that can be easily used without any knowledge about GPU programming and we show that it is about 100 times faster than other state of the art CPU libraries. It may become a powerful tool for many applications that need to perform a large number of acoustic simulations, such as training machine learning systems for audio signal processing, or for real-time room acoustics simulations for immersive multimedia systems, such as augmented or virtual reality.Comment: Submitted to Multimedia Tools and Application

    Revisiting Distributed Synchronous SGD

    Full text link
    Distributed training of deep learning models on large-scale training data is typically conducted with asynchronous stochastic optimization to maximize the rate of updates, at the cost of additional noise introduced from asynchrony. In contrast, the synchronous approach is often thought to be impractical due to idle time wasted on waiting for straggling workers. We revisit these conventional beliefs in this paper, and examine the weaknesses of both approaches. We demonstrate that a third approach, synchronous optimization with backup workers, can avoid asynchronous noise while mitigating for the worst stragglers. Our approach is empirically validated and shown to converge faster and to better test accuracies.Comment: 10 page

    Minimum Latency Training Strategies for Streaming Sequence-to-Sequence ASR

    Full text link
    Recently, a few novel streaming attention-based sequence-to-sequence (S2S) models have been proposed to perform online speech recognition with linear-time decoding complexity. However, in these models, the decisions to generate tokens are delayed compared to the actual acoustic boundaries since their unidirectional encoders lack future information. This leads to an inevitable latency during inference. To alleviate this issue and reduce latency, we propose several strategies during training by leveraging external hard alignments extracted from the hybrid model. We investigate to utilize the alignments in both the encoder and the decoder. On the encoder side, (1) multi-task learning and (2) pre-training with the framewise classification task are studied. On the decoder side, we (3) remove inappropriate alignment paths beyond an acceptable latency during the alignment marginalization, and (4) directly minimize the differentiable expected latency loss. Experiments on the Cortana voice search task demonstrate that our proposed methods can significantly reduce the latency, and even improve the recognition accuracy in certain cases on the decoder side. We also present some analysis to understand the behaviors of streaming S2S models.Comment: Accepted at IEEE ICASSP 202

    Elastic Functional Coding of Riemannian Trajectories

    Full text link
    Visual observations of dynamic phenomena, such as human actions, are often represented as sequences of smoothly-varying features . In cases where the feature spaces can be structured as Riemannian manifolds, the corresponding representations become trajectories on manifolds. Analysis of these trajectories is challenging due to non-linearity of underlying spaces and high-dimensionality of trajectories. In vision problems, given the nature of physical systems involved, these phenomena are better characterized on a low-dimensional manifold compared to the space of Riemannian trajectories. For instance, if one does not impose physical constraints of the human body, in data involving human action analysis, the resulting representation space will have highly redundant features. Learning an effective, low-dimensional embedding for action representations will have a huge impact in the areas of search and retrieval, visualization, learning, and recognition. The difficulty lies in inherent non-linearity of the domain and temporal variability of actions that can distort any traditional metric between trajectories. To overcome these issues, we use the framework based on transported square-root velocity fields (TSRVF); this framework has several desirable properties, including a rate-invariant metric and vector space representations. We propose to learn an embedding such that each action trajectory is mapped to a single point in a low-dimensional Euclidean space, and the trajectories that differ only in temporal rates map to the same point. We utilize the TSRVF representation, and accompanying statistical summaries of Riemannian trajectories, to extend existing coding methods such as PCA, KSVD and Label Consistent KSVD to Riemannian trajectories or more generally to Riemannian functions.Comment: Under major revision at IEEE T-PAMI, 201
    corecore