22,550 research outputs found

    Minimum Conditional Description Length Estimation for Markov Random Fields

    Full text link
    In this paper we discuss a method, which we call Minimum Conditional Description Length (MCDL), for estimating the parameters of a subset of sites within a Markov random field. We assume that the edges are known for the entire graph G=(V,E)G=(V,E). Then, for a subset U⊂VU\subset V, we estimate the parameters for nodes and edges in UU as well as for edges incident to a node in UU, by finding the exponential parameter for that subset that yields the best compression conditioned on the values on the boundary ∂U\partial U. Our estimate is derived from a temporally stationary sequence of observations on the set UU. We discuss how this method can also be applied to estimate a spatially invariant parameter from a single configuration, and in so doing, derive the Maximum Pseudo-Likelihood (MPL) estimate.Comment: Information Theory and Applications (ITA) workshop, February 201

    On Graphical Models via Univariate Exponential Family Distributions

    Full text link
    Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions.Comment: Journal of Machine Learning Researc

    Conjugate Projective Limits

    Full text link
    We characterize conjugate nonparametric Bayesian models as projective limits of conjugate, finite-dimensional Bayesian models. In particular, we identify a large class of nonparametric models representable as infinite-dimensional analogues of exponential family distributions and their canonical conjugate priors. This class contains most models studied in the literature, including Dirichlet processes and Gaussian process regression models. To derive these results, we introduce a representation of infinite-dimensional Bayesian models by projective limits of regular conditional probabilities. We show under which conditions the nonparametric model itself, its sufficient statistics, and -- if they exist -- conjugate updates of the posterior are projective limits of their respective finite-dimensional counterparts. We illustrate our results both by application to existing nonparametric models and by construction of a model on infinite permutations.Comment: 49 pages; improved version: revised proof of theorem 3 (results unchanged), discussion added, exposition revise

    Algebraic statistical models

    Full text link
    Many statistical models are algebraic in that they are defined in terms of polynomial constraints, or in terms of polynomial or rational parametrizations. The parameter spaces of such models are typically semi-algebraic subsets of the parameter space of a reference model with nice properties, such as for example a regular exponential family. This observation leads to the definition of an `algebraic exponential family'. This new definition provides a unified framework for the study of statistical models with algebraic structure. In this paper we review the ingredients to this definition and illustrate in examples how computational algebraic geometry can be used to solve problems arising in statistical inference in algebraic models

    Parsimonious Description of Generalized Gibbs Measures : Decimation of the 2d-Ising Model

    Full text link
    In this paper, we detail and complete the existing characterizations of the decimation of the Ising model on Z2\Z^2 in the generalized Gibbs context. We first recall a few features of the Dobrushin program of restoration of Gibbsianness and present the construction of global specifications consistent with the extremal decimated measures. We use them to consider these renormalized measures as almost Gibbsian measures and to precise its convex set of DLR measures. We also recall the weakly Gibbsian description and complete it using a potential that admits a quenched correlation decay, i.e. a well-defined configuration-dependent length beyond which this potential decays exponentially. We use these results to incorporate these decimated measures in the new framework of parsimonious random fields that has been recently developed to investigate probability aspects related to neurosciences.Comment: 32 pages, preliminary versio
    • …
    corecore