2,692 research outputs found

    Blind image separation based on exponentiated transmuted Weibull distribution

    Full text link
    In recent years the processing of blind image separation has been investigated. As a result, a number of feature extraction algorithms for direct application of such image structures have been developed. For example, separation of mixed fingerprints found in any crime scene, in which a mixture of two or more fingerprints may be obtained, for identification, we have to separate them. In this paper, we have proposed a new technique for separating a multiple mixed images based on exponentiated transmuted Weibull distribution. To adaptively estimate the parameters of such score functions, an efficient method based on maximum likelihood and genetic algorithm will be used. We also calculate the accuracy of this proposed distribution and compare the algorithmic performance using the efficient approach with other previous generalized distributions. We find from the numerical results that the proposed distribution has flexibility and an efficient resultComment: 14 pages, 12 figures, 4 tables. International Journal of Computer Science and Information Security (IJCSIS),Vol. 14, No. 3, March 2016 (pp. 423-433

    Simulation techniques for generalized Gaussian densities

    Get PDF
    This contribution deals with Monte Carlo simulation of generalized Gaussian random variables. Such a parametric family of distributions has been proposed in many applications in science to describe physical phenomena and in engineering, and it seems also useful in modeling economic and financial data. For values of the shape parameter a within a certain range, the distribution presents heavy tails. In particular, the cases a=1/3 and a=1/2 are considered. For such values of the shape parameter, different simulation methods are assessed.Generalized Gaussian density, heavy tails, transformations of rendom variables, Monte Carlo simulation, Lambert W function

    Heavy-Tailed Features and Empirical Analysis of the Limit Order Book Volume Profiles in Futures Markets

    Full text link
    This paper poses a few fundamental questions regarding the attributes of the volume profile of a Limit Order Books stochastic structure by taking into consideration aspects of intraday and interday statistical features, the impact of different exchange features and the impact of market participants in different asset sectors. This paper aims to address the following questions: 1. Is there statistical evidence that heavy-tailed sub-exponential volume profiles occur at different levels of the Limit Order Book on the bid and ask and if so does this happen on intra or interday time scales ? 2.In futures exchanges, are heavy tail features exchange (CBOT, CME, EUREX, SGX and COMEX) or asset class (government bonds, equities and precious metals) dependent and do they happen on ultra-high (<1sec) or mid-range (1sec -10min) high frequency data? 3.Does the presence of stochastic heavy-tailed volume profile features evolve in a manner that would inform or be indicative of market participant behaviors, such as high frequency algorithmic trading, quote stuffing and price discovery intra-daily? 4. Is there statistical evidence for a need to consider dynamic behavior of the parameters of models for Limit Order Book volume profiles on an intra-daily time scale ? Progress on aspects of each question is obtained via statistically rigorous results to verify the empirical findings for an unprecedentedly large set of futures market LOB data. The data comprises several exchanges, several futures asset classes and all trading days of 2010, using market depth (Type II) order book data to 5 levels on the bid and ask

    Autoregressive Kernels For Time Series

    Full text link
    We propose in this work a new family of kernels for variable-length time series. Our work builds upon the vector autoregressive (VAR) model for multivariate stochastic processes: given a multivariate time series x, we consider the likelihood function p_{\theta}(x) of different parameters \theta in the VAR model as features to describe x. To compare two time series x and x', we form the product of their features p_{\theta}(x) p_{\theta}(x') which is integrated out w.r.t \theta using a matrix normal-inverse Wishart prior. Among other properties, this kernel can be easily computed when the dimension d of the time series is much larger than the lengths of the considered time series x and x'. It can also be generalized to time series taking values in arbitrary state spaces, as long as the state space itself is endowed with a kernel \kappa. In that case, the kernel between x and x' is a a function of the Gram matrices produced by \kappa on observations and subsequences of observations enumerated in x and x'. We describe a computationally efficient implementation of this generalization that uses low-rank matrix factorization techniques. These kernels are compared to other known kernels using a set of benchmark classification tasks carried out with support vector machines
    corecore