675 research outputs found

    Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric

    Get PDF
    For processing a weak periodic signal in additive white noise, a locally optimal processor (LOP) achieves the maximal output signal-to-noise ratio (SNR). In general, such a LOP is precisely determined by the noise probability density and also by the noise level. It is shown that the output–input SNR gain of a LOP is given by the Fisher information of a standardized noise distribution. Based on this connection, we find that an arbitrarily large SNR gain, for a LOP, can be achieved ranging from the minimal value of unity upwards. For stochastic resonance, when considering adding extra noise to the original signal, we here demonstrate via the appropriate Fisher information inequality that the updated LOP fully matched to the new noise, is unable to improve the output SNR above its original value with no extra noise. This result generalizes a proof that existed previously only for Gaussian noise. Furthermore, in the situation of non-adjustable processors, for instance when the structure of the LOP as prescribed by the noise probability density is not fully adaptable to the noise level, we show general conditions where stochastic resonance can be recovered, manifested by the possibility of adding extra noise to enhance the output SNR

    The theory analysis and design for large parameter weak signal detector based on bistable stochastic resonance

    Full text link
    Volume 3 Issue 11 (November 2015

    Multi-Stable Stochastic Resonance Based Protection Scheme for Parallel Transmission Lines with UPFC

    Get PDF
    This paper presents a multi-stable stochastic resonance (MSR) based on complex wavelet transform (CWT) for protecting a double line transmission system with unified power flow controller (UPFC) in one line. The fault detection at the sending end is recognized by the collective sum technique (CST) using the current signals of all the three-phases with heavy background noise. The noisy signal is processed by parameter compensation and the processed signal is decomposed by CWT with different scale frequencies. The spectral energies of each phase can be used to identify the faulty phases. The CWT is used to compute the spectral energies of each phase current. The proposed scheme has been studied for wide variation of operating parameters and compared with two other fault extraction methods such as EMD-based spectral analysis and wavelet transform with post spectral analysis. The test results of the proposed CWT based MSR algorithm indicates that it can accurately detect and classify the fault with in one cycle from fault inception

    Flipping Biological Switches: Solving for Optimal Control: A Dissertation

    Get PDF
    Switches play an important regulatory role at all levels of biology, from molecular switches triggering signaling cascades to cellular switches regulating cell maturation and apoptosis. Medical therapies are often designed to toggle a system from one state to another, achieving a specified health outcome. For instance, small doses of subpathologic viruses activate the immune system’s production of antibodies. Electrical stimulation revert cardiac arrhythmias back to normal sinus rhythm. In all of these examples, a major challenge is finding the optimal stimulus waveform necessary to cause the switch to flip. This thesis develops, validates, and applies a novel model-independent stochastic algorithm, the Extrema Distortion Algorithm (EDA), towards finding the optimal stimulus. We validate the EDA’s performance for the Hodgkin-Huxley model (an empirically validated ionic model of neuronal excitability), the FitzHugh-Nagumo model (an abstract model applied to a wide range of biological systems that that exhibit an oscillatory state and a quiescent state), and the genetic toggle switch (a model of bistable gene expression). We show that the EDA is able to not only find the optimal solution, but also in some cases excel beyond the traditional analytic approaches. Finally, we have computed novel optimal stimulus waveforms for aborting epileptic seizures using the EDA in cellular and network models of epilepsy. This work represents a first step in developing a new class of adaptive algorithms and devices that flip biological switches, revealing basic mechanistic insights and therapeutic applications for a broad range of disorders

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments

    Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

    Get PDF
    Quantum optimal control, a toolbox for devising and implementing the shapes of external fields that accomplish given tasks in the operation of a quantum device in the best way possible, has evolved into one of the cornerstones for enabling quantum technologies. The last few years have seen a rapid evolution and expansion of the field. We review here recent progress in our understanding of the controllability of open quantum systems and in the development and application of quantum control techniques to quantum technologies. We also address key challenges and sketch a roadmap for future developments.Comment: this is a living document - we welcome feedback and discussio

    Quantum information processing in multi-spin systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.Includes bibliographical references (p. 133-142).Coherence and entanglement in multi-spin systems are valuable resources for quantum information processing. In this thesis, I explore the manipulation of quantum information in complex multi-spin systems, with particular reference to Nuclear Magnetic Resonance implementations. In systems with a few spins, such as molecules in the liquid phase, the use of multi-spin coherent states provides a hedge against the noise, via the encoding of information in logical degrees of freedom distributed over several spins. Manipulating multi-spin coherent states also increases the complexity of quantum operations required in a quantum processor. Here I present schemes to mitigate this problem, both in the state initialization, with particular attention to bulk ensemble quantum information processing, and in the coherent control and gate implementations. In the many-body limit provided by nuclear spins in single crystals, the limitations in the available control increase the complexity of manipulating the system; also, the equations of motion are no longer exactly solvable even in the closed-system limit. Entanglement and multi-spin coherences are essential for extending the control and the accessible information on the system. I employ entanglement in a large ensemble of spins in order to obtain an amplification of the small perturbation created by a single spin on the spin ensemble, in a scheme for the measurement of a single nuclear spin state. I furthermore use multiple quantum coherences in mixed multi-spin states as a tool to explore many-body behavior of linear chain of spins, showing their ability to perform quantum information processing tasks such as simulations and transport of information.(cont.) The theoretical and experimental results of this thesis suggest that although coherent multi-spin states are particularly fragile and complex to control they could make possible the execution of quantum information processing tasks that have no classical counterparts.by Paola Cappellaro.Ph.D

    Colloquium: Quantum and Classical Discrete Time Crystals

    Full text link
    The spontaneous breaking of time translation symmetry has led to the discovery of a new phase of matter - the discrete time crystal. Discrete time crystals exhibit rigid subharmonic oscillations, which result from a combination of many-body interactions, collective synchronization, and ergodicity breaking. This Colloquium reviews recent theoretical and experimental advances in the study of quantum and classical discrete time crystals. We focus on the breaking of ergodicity as the key to discrete time crystals and the delaying of ergodicity as the source of numerous phenomena that share many of the properties of discrete time crystals, including the AC Josephson effect, coupled map lattices, and Faraday waves. Theoretically, there exists a diverse array of strategies to stabilize time crystalline order in both closed and open systems, ranging from localization and prethermalization to dissipation and error correction. Experimentally, many-body quantum simulators provide a natural platform for investigating signatures of time crystalline order; recent work utilizing trapped ions, solid-state spin systems, and superconducting qubits will be reviewed. Finally, this Colloquium concludes by describing outstanding challenges in the field and a vision for new directions on both the experimental and theoretical fronts.Comment: 29 pages, 13 figures; commissioned review for Reviews of Modern Physic
    • 

    corecore