32,644 research outputs found

    Comparing metaheuristic algorithms for error detection in Java programs

    Get PDF
    Chicano, F., Ferreira M., & Alba E. (2011). Comparing Metaheuristic Algorithms for Error Detection in Java Programs. In Proceedings of Search Based Software Engineering, Szeged, Hungary, September 10-12, 2011. pp. 82–96.Model checking is a fully automatic technique for checking concurrent software properties in which the states of a concurrent system are explored in an explicit or implicit way. The main drawback of this technique is the high memory consumption, which limits the size of the programs that can be checked. In the last years, some researchers have focused on the application of guided non-complete stochastic techniques to the search of the state space of such concurrent programs. In this paper, we compare five metaheuristic algorithms for this problem. The algorithms are Simulated Annealing, Ant Colony Optimization, Particle Swarm Optimization and two variants of Genetic Algorithm. To the best of our knowledge, it is the first time that Simulated Annealing has been applied to the problem. We use in the comparison a benchmark composed of 17 Java concurrent programs. We also compare the results of these algorithms with the ones of deterministic algorithms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish Ministry of Science and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project) and the Andalusian Government under contract P07-TIC-03044 (DIRICOM project)

    Evolving macro-actions for planning

    Get PDF
    Domain re-engineering through macro-actions (i.e. macros) provides one potential avenue for research into learning for planning. However, most existing work learns macros that are reusable plan fragments and so observable from planner behaviours online or plan characteristics offline. Also, there are learning methods that learn macros from domain analysis. Nevertheless, most of these methods explore restricted macro spaces and exploit specific features of planners or domains. But, the learning examples, especially that are used to acquire previous experiences, might not cover many aspects of the system, or might not always reflect that better choices have been made during the search. Moreover, any specific properties are not likely to be common with many planners or domains. This paper presents an offline evolutionary method that learns macros for arbitrary planners and domains. Our method explores a wider macro space and learns macros that are somehow not observable from the examples. Our method also represents a generalised macro learning framework as it does not discover or utilise any specific structural properties of planners or domains
    corecore