4,367 research outputs found

    Exploring user and system requirements of linked data visualization through a visual dashboard approach

    Get PDF
    One of the open problems in SemanticWeb research is which tools should be provided to users to explore linked data. This is even more urgent now that massive amount of linked data is being released by governments worldwide. The development of single dedicated visualization applications is increasing, but the problem of exploring unknown linked data to gain a good understanding of what is contained is still open. An effective generic solution must take into account the user’s point of view, their tasks and interaction, as well as the system’s capabilities and the technical constraints the technology imposes. This paper is a first step in understanding the implications of both, user and system by evaluating our dashboard-based approach. Though we observe a high user acceptance of the dashboard approach, our paper also highlights technical challenges arising out of complexities involving current infrastructure that need to be addressed while visualising linked data. In light of the findings, guidelines for the development of linked data visualization (and manipulation) are provided

    Towards Scalable Visual Exploration of Very Large RDF Graphs

    Full text link
    In this paper, we outline our work on developing a disk-based infrastructure for efficient visualization and graph exploration operations over very large graphs. The proposed platform, called graphVizdb, is based on a novel technique for indexing and storing the graph. Particularly, the graph layout is indexed with a spatial data structure, i.e., an R-tree, and stored in a database. In runtime, user operations are translated into efficient spatial operations (i.e., window queries) in the backend.Comment: 12th Extended Semantic Web Conference (ESWC 2015

    SynVisio: A Multiscale Tool to Explore Genomic Conservation

    Get PDF
    Comparative analysis of genomes is an important area in biological research that can shed light on an organism's internal functions and evolutionary history. It involves comparing two or more genomes to identify similar regions that can indicate shared ancestry and in turn conservation of genetic information. Due to rapid advancements in sequencing systems, high-resolution genome data is readily available for a wide range of species, and comparative analysis of this data can offer crucial evolutionary insights that can be applied in plant breeding and medical research. Visualizing the location, size, and orientation of conserved regions can assist biological researchers in comparative analysis as it is a tedious process that requires extensive manual interpretation and human judgement. However, visualization tools for the analysis of conserved regions have not kept pace with the increasing availability of information and are not designed to support the diverse use cases of researchers. To address this we gathered feedback from experts in the field, and designed improvements for these tools through novel interaction techniques and visual representations. We then developed SynVisio, a web-based tool for exploring conserved regions at multiple resolutions (genome, chromosome, or gene), with several visual representations and interactive features, to meet the diverse needs of genome researchers. SynVisio supports multi-resolution analysis and interactive filtering as researchers move deeper into the genome. It also supports revisitation to specific interface configurations, and enables loosely-coupled collaboration over the genomic data. An evaluation of the system with five researchers from three expert groups coupled with a longitudinal study of web traffic to the system provides evidence about the success of our system's novel features for interactive exploration of conservation

    Supporting social innovation through visualisations of community interactions

    Get PDF
    Online communities that form through the introduction of sociotechnical platforms require significant effort to cultivate and sustain. Providing open, transparent information on community behaviour can motivate participation from community members themselves, while also providing platform administrators with detailed interaction dynamics. However, challenges arise in both understanding what information is conducive to engagement and sustainability, and then how best to represent this information to platform stakeholders. Towards a better understanding of these challenges, we present the design, implementation, and evaluation of a set of simple visualisations integrated into a Collective Awareness Platform for Social Innovation platform titled commonfare.net. We discuss the promise and challenge of bringing social innovation into the digital age, in terms of supporting sustained platform use and collective action, and how the introduction of community visualisations has been directed towards achieving this goal

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation establishes a new visualization design process model devised to guide visualization designers in building more effective and useful visualization systems and tools. The novelty of this framework includes its flexibility for iteration, actionability for guiding visualization designers with concrete steps, concise yet methodical definitions, and connections to other visualization design models commonly used in the field of data visualization. In summary, the design activity framework breaks down the visualization design process into a series of four design activities: understand, ideate, make, and deploy. For each activity, the framework prescribes a descriptive motivation, list of design methods, and expected visualization artifacts. To elucidate the framework, two case studies for visualization design illustrate these concepts, methods, and artifacts in real-world projects in the field of cybersecurity. For example, these projects employ user-centered design methods, such as personas and data sketches, which emphasize our teams' motivations and visualization artifacts with respect to the design activity framework. These case studies also serve as examples for novice visualization designers, and we hypothesized that the framework could serve as a pedagogical tool for teaching and guiding novices through their own design process to create a visualization tool. To externally evaluate the efficacy of this framework, we created worksheets for each design activity, outlining a series of concrete, tangible steps for novices. In order to validate the design worksheets, we conducted 13 student observations over the course of two months, received 32 online survey responses, and performed a qualitative analysis of 11 in-depth interviews. Students found the worksheets both useful and effective for framing the visualization design process. Next, by applying the design activity framework to technique-driven and evaluation-based research projects, we brainstormed possible extensions to the design model. Lastly, we examined implications of the design activity framework and present future work in this space. The visualization community is challenged to consider how to more effectively describe, capture, and communicate the complex, iterative nature of data visualization design throughout research, design, development, and deployment of visualization systems and tools

    A conceptual framework for developing dashboards for big mobility data

    Full text link
    Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic mobility data present a number of challenges in dashboard design. The overall aim for dashboard design is to improve information communication and decision making, though big mobility data in particular require considering privacy alongside size and complexity. Taking these issues into account, a gap remains between wrangling mobility data and developing meaningful dashboard output. Therefore, there is a need for a framework that bridges this gap to support the mobility dashboard development and design process. In this paper we outline a conceptual framework for mobility data dashboards that provides guidance for the development process while considering mobility data structure, volume, complexity, varied application contexts, and privacy constraints. We illustrate the proposed framework’s components and process using example mobility dashboards with varied inputs, end-users and objectives. Overall, the framework offers a basis for developers to understand how informational displays of big mobility data are determined by end-user needs as well as the types of data selection, transformation, and display available to particular mobility datasets

    Industrial Production Process Improvement by a Process Engine Visual Analytics Dashboard

    Get PDF
    Digitalization reshapes production in a sense that production processes are required to be more flexible and more interconnected to produce products in smaller lot sizes. This makes the process improvement much more challenging, as traditional approaches, which are based on the learning curve, are difficult to apply. Data-driven technologies promise help in learning faster by making use of the massive data volumes collected in production environments. Visual analytics approaches are particularly promising in this regard as they aim to enable engineers with their rich domain knowledge to identify opportunities for process improvements. Based on the assumption that process improvement should be connected with the process engine managing the process execution, we propose a visual analytics dashboard which integrates process models. Based on a case study in the smart factory of Vienna, we conducted two pair analytics sessions. The first results seem promising, whereas domain experts articulate their wish for improvements and future work
    corecore