4,000 research outputs found

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Reflecting Human Knowledge of Place and Route-Choice Behavior Using Big Data

    Get PDF
    Exploring human knowledge of geographical space and related behavior not only helps in understanding human-environment interactions and dynamic geographic processes, but also advances Geographic Information Systems (GIS) toward a human-centric paradigm to make daily life more efficient. Today’s relatively easy acquisition of various big data provides an unprecedented opportunity for geographers to answer research questions that previously could not be adequately addressed. However, new challenges also arise regarding data quality and bias as well as change in methodology for dealing with big data that are different from traditional data types. Representing people’s perception of place and studying driver’s route-choice behavior are two of the many applications of big data in answering research questions about human knowledge and behavior in the fields of GIS and transportation. Incorporating three papers, this dissertation focuses on these two different applications to achieve the following objectives: 1) examine the degree to which a geographic place’s spatial extent can be estimated from human-generated geotagged photos; 2) address the challenge of geotagged photos’ uneven spatial distribution in place estimation and explore an approach that can better derive a place’s spatial extent; 3) develop a method that can properly estimate the spatial extent of a place that has multiple disjoint regions while considering geotagged photos’ uneven distribution; 4) explore useful spatiotemporal patterns of taxi drivers’ route-choice behavior in a dynamic urban environment. This dissertation makes three major contributions to big data applications’ systematic theory: 1) proposes an effective approach to handling the uneven spatial distribution problem of geotagged photos as a type of volunteered geographic data by modeling their representativeness; 2) develops methods that can properly derive the vague spatial extent of a place with or without disjoint regions; and 3) explores taxi drivers’ route-choice patterns in different situations that can inform future transportation decisions and policy-making processes

    Visual analytics of location-based social networks for decision support

    Get PDF
    Recent advances in technology have enabled people to add location information to social networks called Location-Based Social Networks (LBSNs) where people share their communication and whereabouts not only in their daily lives, but also during abnormal situations, such as crisis events. However, since the volume of the data exceeds the boundaries of human analytical capabilities, it is almost impossible to perform a straightforward qualitative analysis of the data. The emerging field of visual analytics has been introduced to tackle such challenges by integrating the approaches from statistical data analysis and human computer interaction into highly interactive visual environments. Based on the idea of visual analytics, this research contributes the techniques of knowledge discovery in social media data for providing comprehensive situational awareness. We extract valuable hidden information from the huge volume of unstructured social media data and model the extracted information for visualizing meaningful information along with user-centered interactive interfaces. We develop visual analytics techniques and systems for spatial decision support through coupling modeling of spatiotemporal social media data, with scalable and interactive visual environments. These systems allow analysts to detect and examine abnormal events within social media data by integrating automated analytical techniques and visual methods. We provide comprehensive analysis of public behavior response in disaster events through exploring and examining the spatial and temporal distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs for anomalous human movement analysis during crises by incorporating a novel classification technique. Finally, we introduce a visual analytics approach for forecasting the overall flow of human crowds
    • …
    corecore