131,129 research outputs found

    Curiosity-driven Exploration by Self-supervised Prediction

    Full text link
    In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch. Demo video and code available at https://pathak22.github.io/noreward-rl/Comment: In ICML 2017. Website at https://pathak22.github.io/noreward-rl

    Deep Ordinal Hashing with Spatial Attention

    Full text link
    Hashing has attracted increasing research attentions in recent years due to its high efficiency of computation and storage in image retrieval. Recent works have demonstrated the superiority of simultaneous feature representations and hash functions learning with deep neural networks. However, most existing deep hashing methods directly learn the hash functions by encoding the global semantic information, while ignoring the local spatial information of images. The loss of local spatial structure makes the performance bottleneck of hash functions, therefore limiting its application for accurate similarity retrieval. In this work, we propose a novel Deep Ordinal Hashing (DOH) method, which learns ordinal representations by leveraging the ranking structure of feature space from both local and global views. In particular, to effectively build the ranking structure, we propose to learn the rank correlation space by exploiting the local spatial information from Fully Convolutional Network (FCN) and the global semantic information from the Convolutional Neural Network (CNN) simultaneously. More specifically, an effective spatial attention model is designed to capture the local spatial information by selectively learning well-specified locations closely related to target objects. In such hashing framework,the local spatial and global semantic nature of images are captured in an end-to-end ranking-to-hashing manner. Experimental results conducted on three widely-used datasets demonstrate that the proposed DOH method significantly outperforms the state-of-the-art hashing methods

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Full text link
    In this paper, we develop a new approach of spatially supervised recurrent convolutional neural networks for visual object tracking. Our recurrent convolutional network exploits the history of locations as well as the distinctive visual features learned by the deep neural networks. Inspired by recent bounding box regression methods for object detection, we study the regression capability of Long Short-Term Memory (LSTM) in the temporal domain, and propose to concatenate high-level visual features produced by convolutional networks with region information. In contrast to existing deep learning based trackers that use binary classification for region candidates, we use regression for direct prediction of the tracking locations both at the convolutional layer and at the recurrent unit. Our extensive experimental results and performance comparison with state-of-the-art tracking methods on challenging benchmark video tracking datasets shows that our tracker is more accurate and robust while maintaining low computational cost. For most test video sequences, our method achieves the best tracking performance, often outperforms the second best by a large margin.Comment: 10 pages, 9 figures, conferenc

    Classifying Symmetrical Differences and Temporal Change in Mammography Using Deep Neural Networks

    Full text link
    We investigate the addition of symmetry and temporal context information to a deep Convolutional Neural Network (CNN) with the purpose of detecting malignant soft tissue lesions in mammography. We employ a simple linear mapping that takes the location of a mass candidate and maps it to either the contra-lateral or prior mammogram and Regions Of Interest (ROI) are extracted around each location. We subsequently explore two different architectures (1) a fusion model employing two datastreams were both ROIs are fed to the network during training and testing and (2) a stage-wise approach where a single ROI CNN is trained on the primary image and subsequently used as feature extractor for both primary and symmetrical or prior ROIs. A 'shallow' Gradient Boosted Tree (GBT) classifier is then trained on the concatenation of these features and used to classify the joint representation. Results shown a significant increase in performance using the first architecture and symmetry information, but only marginal gains in performance using temporal data and the other setting. We feel results are promising and can greatly be improved when more temporal data becomes available

    A Survey on Food Computing

    Full text link
    Food is very essential for human life and it is fundamental to the human experience. Food-related study may support multifarious applications and services, such as guiding the human behavior, improving the human health and understanding the culinary culture. With the rapid development of social networks, mobile networks, and Internet of Things (IoT), people commonly upload, share, and record food images, recipes, cooking videos, and food diaries, leading to large-scale food data. Large-scale food data offers rich knowledge about food and can help tackle many central issues of human society. Therefore, it is time to group several disparate issues related to food computing. Food computing acquires and analyzes heterogenous food data from disparate sources for perception, recognition, retrieval, recommendation, and monitoring of food. In food computing, computational approaches are applied to address food related issues in medicine, biology, gastronomy and agronomy. Both large-scale food data and recent breakthroughs in computer science are transforming the way we analyze food data. Therefore, vast amounts of work has been conducted in the food area, targeting different food-oriented tasks and applications. However, there are very few systematic reviews, which shape this area well and provide a comprehensive and in-depth summary of current efforts or detail open problems in this area. In this paper, we formalize food computing and present such a comprehensive overview of various emerging concepts, methods, and tasks. We summarize key challenges and future directions ahead for food computing. This is the first comprehensive survey that targets the study of computing technology for the food area and also offers a collection of research studies and technologies to benefit researchers and practitioners working in different food-related fields.Comment: Accepted by ACM Computing Survey

    Vision-to-Language Tasks Based on Attributes and Attention Mechanism

    Full text link
    Vision-to-language tasks aim to integrate computer vision and natural language processing together, which has attracted the attention of many researchers. For typical approaches, they encode image into feature representations and decode it into natural language sentences. While they neglect high-level semantic concepts and subtle relationships between image regions and natural language elements. To make full use of these information, this paper attempt to exploit the text guided attention and semantic-guided attention (SA) to find the more correlated spatial information and reduce the semantic gap between vision and language. Our method includes two level attention networks. One is the text-guided attention network which is used to select the text-related regions. The other is SA network which is used to highlight the concept-related regions and the region-related concepts. At last, all these information are incorporated to generate captions or answers. Practically, image captioning and visual question answering experiments have been carried out, and the experimental results have shown the excellent performance of the proposed approach.Comment: 15 pages, 6 figures, 50 reference

    HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection

    Full text link
    Salient object detection (SOD), which aims to find the most important region of interest and segment the relevant object/item in that area, is an important yet challenging vision task. This problem is inspired by the fact that human seems to perceive main scene elements with high priorities. Thus, accurate detection of salient objects in complex scenes is critical for human-computer interaction. In this paper, we present a novel feature learning framework for SOD, in which we cast the SOD as a pixel-wise classification problem. The proposed framework utilizes a densely hierarchical feature fusion network, named HyperFusion-Net, automatically predicts the most important area and segments the associated objects in an end-to-end manner. Specifically, inspired by the human perception system and image reflection separation, we first decompose input images into reflective image pairs by content-preserving transforms. Then, the complementary information of reflective image pairs is jointly extracted by an interweaved convolutional neural network (ICNN) and hierarchically combined with a hyper-dense fusion mechanism. Based on the fused multi-scale features, our method finally achieves a promising way of predicting SOD. As shown in our extensive experiments, the proposed method consistently outperforms other state-of-the-art methods on seven public datasets with a large margin.Comment: Submmited to ECCV 2018, 16 pages, including 6 figures and 4 tables. arXiv admin note: text overlap with arXiv:1802.0652

    Exploring Visual Relationship for Image Captioning

    Full text link
    It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.Comment: ECCV 201

    Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction

    Full text link
    Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel Contextualized Spatial-Temporal Network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC) and global correlation context (GCC) respectively. Firstly, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi demand respectively from the origin view and the destination view. Secondly, a TEC module incorporates both the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. Extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for taxi origin-destination demand prediction

    Human Pose Estimation with Spatial Contextual Information

    Full text link
    We explore the importance of spatial contextual information in human pose estimation. Most state-of-the-art pose networks are trained in a multi-stage manner and produce several auxiliary predictions for deep supervision. With this principle, we present two conceptually simple and yet computational efficient modules, namely Cascade Prediction Fusion (CPF) and Pose Graph Neural Network (PGNN), to exploit underlying contextual information. Cascade prediction fusion accumulates prediction maps from previous stages to extract informative signals. The resulting maps also function as a prior to guide prediction at following stages. To promote spatial correlation among joints, our PGNN learns a structured representation of human pose as a graph. Direct message passing between different joints is enabled and spatial relation is captured. These two modules require very limited computational complexity. Experimental results demonstrate that our method consistently outperforms previous methods on MPII and LSP benchmark
    corecore