11,488 research outputs found

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    Cloudbus Toolkit for Market-Oriented Cloud Computing

    Full text link
    This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.Comment: 21 pages, 6 figures, 2 tables, Conference pape

    The EPOC project: Energy Proportional and Opportunistic Computing system

    Get PDF
    15397International audienceWith the emergence of the Future Internet and the dawning of new IT models such as cloud computing, the usage of data centers (DC), and consequently their power consumption, increase dramatically. Besides the ecological impact, the energy consumption is a predominant criteria for DC providers since it determines the daily cost of their infrastructure. As a consequence, power management becomes one of the main challenges for DC infrastructures and more generally for large-scale distributed systems. In this paper, we present the EPOC project which focuses on optimizing the energy consumption of mono-site DCs connected to the regular electrical grid and to renewable energy sources

    Energy-Aware Server Provisioning by Introducing Middleware-Level Dynamic Green Scheduling

    Get PDF
    International audienceSeveral approaches to reduce the power consumption of datacenters have been described in the literature, most of which aim to improve energy efficiency by trading off performance for reducing power consumption. However, these approaches do not always provide means for administrators and users to specify how they want to explore such trade-offs. This work provides techniques for assigning jobs to distributed resources, exploring energy efficient resource provisioning. We use middleware-level mechanisms to adapt resource allocation according to energy-related events and user-defined rules. A proposed framework enables developers, users and system administrators to specify and explore energy efficiency and performance trade-offs without detailed knowledge of the underlying hardware platform. Evaluation of the proposed solution under three scheduling policies shows gains of 25% in energy-efficiency with minimal impact on the overall application performance. We also evaluate reactivity in the adaptive resource provisioning
    • 

    corecore