208 research outputs found

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Challenges and Remedies to Privacy and Security in AIGC: Exploring the Potential of Privacy Computing, Blockchain, and Beyond

    Full text link
    Artificial Intelligence Generated Content (AIGC) is one of the latest achievements in AI development. The content generated by related applications, such as text, images and audio, has sparked a heated discussion. Various derived AIGC applications are also gradually entering all walks of life, bringing unimaginable impact to people's daily lives. However, the rapid development of such generative tools has also raised concerns about privacy and security issues, and even copyright issues in AIGC. We note that advanced technologies such as blockchain and privacy computing can be combined with AIGC tools, but no work has yet been done to investigate their relevance and prospect in a systematic and detailed way. Therefore it is necessary to investigate how they can be used to protect the privacy and security of data in AIGC by fully exploring the aforementioned technologies. In this paper, we first systematically review the concept, classification and underlying technologies of AIGC. Then, we discuss the privacy and security challenges faced by AIGC from multiple perspectives and purposefully list the countermeasures that currently exist. We hope our survey will help researchers and industry to build a more secure and robust AIGC system.Comment: 43 pages, 10 figure

    RAWIW: RAW Image Watermarking Robust to ISP Pipeline

    Full text link
    Invisible image watermarking is essential for image copyright protection. Compared to RGB images, RAW format images use a higher dynamic range to capture the radiometric characteristics of the camera sensor, providing greater flexibility in post-processing and retouching. Similar to the master recording in the music industry, RAW images are considered the original format for distribution and image production, thus requiring copyright protection. Existing watermarking methods typically target RGB images, leaving a gap for RAW images. To address this issue, we propose the first deep learning-based RAW Image Watermarking (RAWIW) framework for copyright protection. Unlike RGB image watermarking, our method achieves cross-domain copyright protection. We directly embed copyright information into RAW images, which can be later extracted from the corresponding RGB images generated by different post-processing methods. To achieve end-to-end training of the framework, we integrate a neural network that simulates the ISP pipeline to handle the RAW-to-RGB conversion process. To further validate the generalization of our framework to traditional ISP pipelines and its robustness to transmission distortion, we adopt a distortion network. This network simulates various types of noises introduced during the traditional ISP pipeline and transmission. Furthermore, we employ a three-stage training strategy to strike a balance between robustness and concealment of watermarking. Our extensive experiments demonstrate that RAWIW successfully achieves cross-domain copyright protection for RAW images while maintaining their visual quality and robustness to ISP pipeline distortions

    Seeds Don't Lie: An Adaptive Watermarking Framework for Computer Vision Models

    Full text link
    In recent years, various watermarking methods were suggested to detect computer vision models obtained illegitimately from their owners, however they fail to demonstrate satisfactory robustness against model extraction attacks. In this paper, we present an adaptive framework to watermark a protected model, leveraging the unique behavior present in the model due to a unique random seed initialized during the model training. This watermark is used to detect extracted models, which have the same unique behavior, indicating an unauthorized usage of the protected model's intellectual property (IP). First, we show how an initial seed for random number generation as part of model training produces distinct characteristics in the model's decision boundaries, which are inherited by extracted models and present in their decision boundaries, but aren't present in non-extracted models trained on the same data-set with a different seed. Based on our findings, we suggest the Robust Adaptive Watermarking (RAW) Framework, which utilizes the unique behavior present in the protected and extracted models to generate a watermark key-set and verification model. We show that the framework is robust to (1) unseen model extraction attacks, and (2) extracted models which undergo a blurring method (e.g., weight pruning). We evaluate the framework's robustness against a naive attacker (unaware that the model is watermarked), and an informed attacker (who employs blurring strategies to remove watermarked behavior from an extracted model), and achieve outstanding (i.e., >0.9) AUC values. Finally, we show that the framework is robust to model extraction attacks with different structure and/or architecture than the protected model.Comment: 9 pages, 6 figures, 3 table
    • …
    corecore