1,368 research outputs found

    Neutrality: A Necessity for Self-Adaptation

    Full text link
    Self-adaptation is used in all main paradigms of evolutionary computation to increase efficiency. We claim that the basis of self-adaptation is the use of neutrality. In the absence of external control neutrality allows a variation of the search distribution without the risk of fitness loss.Comment: 6 pages, 3 figures, LaTe

    Imputation Estimators Partially Correct for Model Misspecification

    Full text link
    Inference problems with incomplete observations often aim at estimating population properties of unobserved quantities. One simple way to accomplish this estimation is to impute the unobserved quantities of interest at the individual level and then take an empirical average of the imputed values. We show that this simple imputation estimator can provide partial protection against model misspecification. We illustrate imputation estimators' robustness to model specification on three examples: mixture model-based clustering, estimation of genotype frequencies in population genetics, and estimation of Markovian evolutionary distances. In the final example, using a representative model misspecification, we demonstrate that in non-degenerate cases, the imputation estimator dominates the plug-in estimate asymptotically. We conclude by outlining a Bayesian implementation of the imputation-based estimation.Comment: major rewrite, beta-binomial example removed, model based clustering is added to the mixture model example, Bayesian approach is now illustrated with the genetics exampl

    The Evolutionary Unfolding of Complexity

    Get PDF
    We analyze the population dynamics of a broad class of fitness functions that exhibit epochal evolution---a dynamical behavior, commonly observed in both natural and artificial evolutionary processes, in which long periods of stasis in an evolving population are punctuated by sudden bursts of change. Our approach---statistical dynamics---combines methods from both statistical mechanics and dynamical systems theory in a way that offers an alternative to current ``landscape'' models of evolutionary optimization. We describe the population dynamics on the macroscopic level of fitness classes or phenotype subbasins, while averaging out the genotypic variation that is consistent with a macroscopic state. Metastability in epochal evolution occurs solely at the macroscopic level of the fitness distribution. While a balance between selection and mutation maintains a quasistationary distribution of fitness, individuals diffuse randomly through selectively neutral subbasins in genotype space. Sudden innovations occur when, through this diffusion, a genotypic portal is discovered that connects to a new subbasin of higher fitness genotypes. In this way, we identify innovations with the unfolding and stabilization of a new dimension in the macroscopic state space. The architectural view of subbasins and portals in genotype space clarifies how frozen accidents and the resulting phenotypic constraints guide the evolution to higher complexity.Comment: 28 pages, 5 figure

    Evolvability signatures of generative encodings: beyond standard performance benchmarks

    Full text link
    Evolutionary robotics is a promising approach to autonomously synthesize machines with abilities that resemble those of animals, but the field suffers from a lack of strong foundations. In particular, evolutionary systems are currently assessed solely by the fitness score their evolved artifacts can achieve for a specific task, whereas such fitness-based comparisons provide limited insights about how the same system would evaluate on different tasks, and its adaptive capabilities to respond to changes in fitness (e.g., from damages to the machine, or in new situations). To counter these limitations, we introduce the concept of "evolvability signatures", which picture the post-mutation statistical distribution of both behavior diversity (how different are the robot behaviors after a mutation?) and fitness values (how different is the fitness after a mutation?). We tested the relevance of this concept by evolving controllers for hexapod robot locomotion using five different genotype-to-phenotype mappings (direct encoding, generative encoding of open-loop and closed-loop central pattern generators, generative encoding of neural networks, and single-unit pattern generators (SUPG)). We observed a predictive relationship between the evolvability signature of each encoding and the number of generations required by hexapods to adapt from incurred damages. Our study also reveals that, across the five investigated encodings, the SUPG scheme achieved the best evolvability signature, and was always foremost in recovering an effective gait following robot damages. Overall, our evolvability signatures neatly complement existing task-performance benchmarks, and pave the way for stronger foundations for research in evolutionary robotics.Comment: 24 pages with 12 figures in the main text, and 4 supplementary figures. Accepted at Information Sciences journal (in press). Supplemental videos are available online at, see http://goo.gl/uyY1R

    Bridging scales in cancer progression: Mapping genotype to phenotype using neural networks

    Full text link
    In this review we summarize our recent efforts in trying to understand the role of heterogeneity in cancer progression by using neural networks to characterise different aspects of the mapping from a cancer cells genotype and environment to its phenotype. Our central premise is that cancer is an evolving system subject to mutation and selection, and the primary conduit for these processes to occur is the cancer cell whose behaviour is regulated on multiple biological scales. The selection pressure is mainly driven by the microenvironment that the tumour is growing in and this acts directly upon the cell phenotype. In turn, the phenotype is driven by the intracellular pathways that are regulated by the genotype. Integrating all of these processes is a massive undertaking and requires bridging many biological scales (i.e. genotype, pathway, phenotype and environment) that we will only scratch the surface of in this review. We will focus on models that use neural networks as a means of connecting these different biological scales, since they allow us to easily create heterogeneity for selection to act upon and importantly this heterogeneity can be implemented at different biological scales. More specifically, we consider three different neural networks that bridge different aspects of these scales and the dialogue with the micro-environment, (i) the impact of the micro-environment on evolutionary dynamics, (ii) the mapping from genotype to phenotype under drug-induced perturbations and (iii) pathway activity in both normal and cancer cells under different micro-environmental conditions

    A Sequence-to-Function Map for Ribozyme-catalyzed Metabolisms

    Get PDF
    We introduce a novel genotype-phenotype mapping based on the relation between RNA sequence and its secondary structure for the use in evolutionary studies. Various extensive studies concerning RNA folding in the context of neutral theory yielded insights about properties of the structure space and the mapping itself. We intend to get a better understanding of some of these properties and especially of the evolution of RNA-molecules as well as their effect on the evolution of the entire molecular system. We investigate the constitution of the neutral network and compare our mapping with other artificial approaches using cellular automatons, random boolean networks and others also based on RNA folding. We yield the highest extent, connectivity and evolvability of the underlying neutral network. Further, we successfully apply the mapping in an existing model for the evolution of a ribozyme-catalyzed metabolism

    A Method for the Perceptual Optimization of Complex Visualizations

    Get PDF
    A common problem in visualization applications is the display of one surface overlying another. Unfortunately, it is extremely difficult to do this clearly and effectively. Stereoscopic viewing can help, but in order for us to be able to see both surfaces simultaneously, they must be textured, and the top surface must be made partially transparent. There is also abundant evidence that all textures are not equal in helping to reveal surface shape, but there are no general guidelines describing the best set of textures to be used in this way. What makes the problem difficult to perceptually optimize is that there are a great many variables involved. Both foreground and background textures must be specified in terms of their component colors, texture element shapes, distributions, and sizes. Also to be specified is the degree of transparency for the foreground texture components. Here we report on a novel approach to creating perceptually optimal solutions to complex visualization problems and we apply it to the overlapping surface problem as a test case. Our approach is a three-stage process. In the first stage we create a parameterized method for specifying a foreground and background pair of textures. In the second stage a genetic algorithm is applied to a population of texture pairs using subject judgments as a selection criterion. Over many trials effective texture pairs evolve. The third stage involves characterizing and generalizing the examples of effective textures. We detail this process and present some early results

    Lenia and Expanded Universe

    Full text link
    We report experimental extensions of Lenia, a continuous cellular automata family capable of producing lifelike self-organizing autonomous patterns. The rule of Lenia was generalized into higher dimensions, multiple kernels, and multiple channels. The final architecture approaches what can be seen as a recurrent convolutional neural network. Using semi-automatic search e.g. genetic algorithm, we discovered new phenomena like polyhedral symmetries, individuality, self-replication, emission, growth by ingestion, and saw the emergence of "virtual eukaryotes" that possess internal division of labor and type differentiation. We discuss the results in the contexts of biology, artificial life, and artificial intelligence.Comment: 8 pages, 5 figures, 1 table; submitted to ALIFE 2020 conferenc
    corecore