2,268 research outputs found

    Proceedings of the Second International Workshop on Physicality, Physicality 2007

    Get PDF

    Mediated Physicality: Inducing Illusory Physicality of Virtual Humans via Their Interactions with Physical Objects

    Get PDF
    The term virtual human (VH) generally refers to a human-like entity comprised of computer graphics and/or physical body. In the associated research literature, a VH can be further classified as an avatar - a human-controlled VH, or an agent - a computer-controlled VH. Because of the resemblance with humans, people naturally distinguish them from non-human objects, and often treat them in ways similar to real humans. Sometimes people develop a sense of co-presence or social presence with the VH - a phenomenon that is often exploited for training simulations where the VH assumes the role of a human. Prior research associated with VHs has primarily focused on the realism of various visual traits, e.g., appearance, shape, and gestures. However, our sense of the presence of other humans is also affected by other physical sensations conveyed through nearby space or physical objects. For example, we humans can perceive the presence of other individuals via the sound or tactile sensation of approaching footsteps, or by the presence of complementary or opposing forces when carrying a physical box with another person. In my research, I exploit the fact that these sensations, when correlated with events in the shared space, affect one\u27s feeling of social/co-presence with another person. In this dissertation, I introduce novel methods for utilizing direct and indirect physical-virtual interactions with VHs to increase the sense of social/co-presence with the VHs - an approach I refer to as mediated physicality. I present results from controlled user studies, in various virtual environment settings, that support the idea that mediated physicality can increase a user\u27s sense of social/co-presence with the VH, and/or induced realistic social behavior. I discuss relationships to prior research, possible explanations for my findings, and areas for future research

    Do tangible interfaces enhance learning?

    Get PDF
    Conceptual work on tangible interfaces has focused primarily on the production of descriptive frameworks. While this work has been successful in mapping out a space of technical possibilities and providing a terminology to ground discussion, it provides little guidance on the cognitive or social effects of using one type of interface or another. In this paper we look at the area of learning with tangible interfaces, suggesting that more empirically grounded research is needed to guide development. We provide an analytic framework of six perspectives, which describes latent trends and assumptions that might be used to motivate and guide this work, and makes links with existing research in cognitive science and education

    Group reaching over digital tabletops with digital arm embodiments

    Get PDF
    In almost all collaborative tabletop tasks, groups require coordinated access to the shared objects on the table’s surface. The physical social norms of close-proximity interactions built up over years of interacting around other physical bodies cause people to avoid interfering with other people (e.g., avoiding grabbing the same object simultaneously). However, some digital tabletop situations require the use of indirect input (e.g., when using mice, and when supporting remote users). With indirect input, people are no longer physically embodied during their reaching gestures, so most systems provide digital embodiments – visual representations of each person – to provide feedback to both the person who is reaching and to the other group members. Tabletop arm embodiments have been shown to better support group interactions than simple visual designs, providing awareness of actions to the group. However, researchers and digital tabletop designers know little of how the design of digital arm embodiments affects the fundamental group tabletop interaction of reaching for objects. Therefore, in this thesis, we evaluate how people coordinate their interactions over digital tabletops when using different types of embodiments. Specifically, in a series of studies, we investigate how the visual design (what they look like) and interaction design (how they work) of digital arm embodiments affects a group’s coordinative behaviours in an open- ended parallel tabletop task. We evaluated visual factors of size, transparency, and realism (through pictures and videos of physical arms), as well as interaction factors of input and augmentations (feedback of interactions), in both a co-located and distributed environment. We found that the visual design had little effect on a group’s ability to coordinate access to shared tabletop items, that embodiment augmentations are useful to support group coordinative actions, and that there are large differences when the person is not physically co-present. Our results demonstrate an initial exploration into the design of digital arm embodiments, providing design guidelines for future researchers and designers to use when designing the next generation of shared digital spaces

    Using Haptic Virtual Reality to Increase Learning Gains and Construct Knowledge of Unobservable Phenomena

    Get PDF
    This project is designed to be a compilation of ten haptic virtual reality labs using the software zSpace. The labs will follow the NYS Living Environment Standards as well as the Next Generation Science Standards for living environment as well as physical/general science topics for middle school students. The project will be a list of available laboratories along with their appropriate fit into the curriculum and a description of how they fit New York State curriculum standards for the appropriate discipline. The goal of these laboratory assignments is to increase learning gains in students by allowing them to experience scientific phenomena that can often be unrelatable and unobservable

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Developments and key issues in tourism mobilities

    Get PDF
    This paper examines key developments in recent tourism mobilities research. It begins by outlining the recent conceptualisation of tourism mobilities, arguing that it is not just that tourism is a form of mobility like other forms of mobility but that different mobilities inform and are informed by tourism. It then examines work which has been developed in terms of materialities, autmobilities and new technologies. It concludes by discussing mobile methodologies and some thoughts on future research directions

    Bringing the Physical to the Digital

    Get PDF
    This dissertation describes an exploration of digital tabletop interaction styles, with the ultimate goal of informing the design of a new model for tabletop interaction. In the context of this thesis the term digital tabletop refers to an emerging class of devices that afford many novel ways of interaction with the digital. Allowing users to directly touch information presented on large, horizontal displays. Being a relatively young field, many developments are in flux; hardware and software change at a fast pace and many interesting alternative approaches are available at the same time. In our research we are especially interested in systems that are capable of sensing multiple contacts (e.g., fingers) and richer information such as the outline of whole hands or other physical objects. New sensor hardware enable new ways to interact with the digital. When embarking into the research for this thesis, the question which interaction styles could be appropriate for this new class of devices was a open question, with many equally promising answers. Many everyday activities rely on our hands ability to skillfully control and manipulate physical objects. We seek to open up different possibilities to exploit our manual dexterity and provide users with richer interaction possibilities. This could be achieved through the use of physical objects as input mediators or through virtual interfaces that behave in a more realistic fashion. In order to gain a better understanding of the underlying design space we choose an approach organized into two phases. First, two different prototypes, each representing a specific interaction style – namely gesture-based interaction and tangible interaction – have been implemented. The flexibility of use afforded by the interface and the level of physicality afforded by the interface elements are introduced as criteria for evaluation. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops is analyzed based on these criteria. In a second stage the learnings from these initial explorations are applied to inform the design of a novel model for digital tabletop interaction. This model is based on the combination of rich multi-touch sensing and a three dimensional environment enriched by a gaming physics simulation. The proposed approach enables users to interact with the virtual through richer quantities such as collision and friction. Enabling a variety of fine-grained interactions using multiple fingers, whole hands and physical objects. Our model makes digital tabletop interaction even more “natural”. However, because the interaction – the sensed input and the displayed output – is still bound to the surface, there is a fundamental limitation in manipulating objects using the third dimension. To address this issue, we present a technique that allows users to – conceptually – pick objects off the surface and control their position in 3D. Our goal has been to define a technique that completes our model for on-surface interaction and allows for “as-direct-as possible” interactions. We also present two hardware prototypes capable of sensing the users’ interactions beyond the table’s surface. Finally, we present visual feedback mechanisms to give the users the sense that they are actually lifting the objects off the surface. This thesis contributes on various levels. We present several novel prototypes that we built and evaluated. We use these prototypes to systematically explore the design space of digital tabletop interaction. The flexibility of use afforded by the interaction style is introduced as criterion alongside the user interface elements’ physicality. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops are analyzed. We present a new model for tabletop interaction that increases the fidelity of interaction possible in such settings. Finally, we extend this model so to enable as direct as possible interactions with 3D data, interacting from above the table’s surface

    Information Technology and Human Factors to Enhance Design and Constructability Review Processes in Construction

    Get PDF
    abstract: Emerging information and communication technology (ICT) has had an enormous effect on the building architecture, engineering, construction and operation (AECO) fields in recent decades. The effects have resonated in several disciplines, such as project information flow, design representation and communication, and Building Information Modeling (BIM) approaches. However, these effects can potentially impact communication and coordination of the virtual design contents in both design and construction phases. Therefore, and with the great potential for emerging technologies in construction projects, it is essential to understand how these technologies influence virtual design information within the organizations as well as individuals’ behaviors. This research focusses on understanding current emerging technologies and its impacts on projects virtual design information and communication among projects stakeholders within the AECO organizations.Dissertation/ThesisDoctoral Dissertation Civil and Environmental Engineering 201
    • …
    corecore