4 research outputs found

    The Runbot: engineering control applied to rehabilitation in spinal cord injury patients

    Get PDF
    Human walking is a complicated interaction among the musculoskeletal system, nervous system and the environment. An injury affecting the neurological system, such as a spinal cord injury (SCI) can cause sensor and motor deficits, and can result in a partial or complete loss of their ambulatory functions. Functional electrical stimulation (FES), a technique to generate artificial muscle contractions with the application of electrical current, has been shown to improve the ambulatory ability of patients with an SCI. FES walking systems have been used as a neural prosthesis to assist patients walking, but further work is needed to establish a system with reduced engineering complexity which more closely resembles the pattern of natural walking. The aim of this thesis was to develop a new FES gait assistance system with a simple and efficient FES control based on insights from robotic walking models, which can be used in patients with neuromuscular dysfunction, for example in SCI. The understanding of human walking is fundamental to develop suitable control strategies. Limit cycle walkers are capable of walking with reduced mechanical complexity and simple control. Walking robots based on this principle allow bio-inspired mechanisms to be analysed and validated in a real environment. The Runbot is a bipedal walker which has been developed based on models of reflexes in the human central nervous system, without the need for a precise trajectory algorithm. Instead, the timing of the control pattern is based on ground contact information. Taking the inspiration of bio-inspired robotic control, two primary objectives were addressed. Firstly, the development of a new reflexive controller with the addition of ankle control. Secondly, the development of a new FES walking system with an FES control model derived from the principles of the robotic control system. The control model of the original Runbot utilized a model of neuronal firing processes based on the complexity of the central neural system. As a causal relationship between foot contact information and muscle activity during human walking has been established, the control model was simplified using filter functions that transfer the sensory inputs into motor outputs, based on experimental observations in humans. The transfer functions were applied to the RunBot II to generate a stable walking pattern. A control system for walking was created, based on linear transfer functions and ground reaction information. The new control system also includes ankle control, which has not been considered before. The controller was validated in experiments with the new RunBot III. The successful generation of stable walking with the implementation of the novel reflexive robotic controller indicates that the control system has the potential to be used in controlling the strategies in neural prosthesis for the retraining of an efficient and effective gait. To aid of the development of the FES walking system, a reliable and practical gait phase detection system was firstly developed to provide correct ground contact information and trigger timing for the control. The reliability of the system was investigated in experiments with ten able-bodied subjects. Secondly, an automatic FES walking system was implemented, which can apply stimulation to eight muscles (four in each leg) in synchrony with the user’s walking activity. The feasibility and effectiveness of this system for gait assistance was demonstrated with an experiment in seven able-bodied participants. This thesis addresses the feasibility and effectiveness of applying biomimetic robotic control principles to FES control. The interaction among robotic control, biology and FES control in assistive neural prosthesis provides a novel framework to developing an efficient and effective control system that can be applied in various control applications

    Neues Konzept zur Bewegungsanalyse und -synthese für Humanoide Roboter basierend auf Vorbildern aus der Biologie

    Get PDF
    Es werden neue Methoden zur Bewegungsgenerierung und -analyse von humanoiden Robotern vorgestellt und zur Anwendung gebracht. Als Vorbild dienen zum Einen menschliche Reflexe, zum Anderen zentrale neuronale Mustergeneratoren (CPG) für zyklische Bewegungen. Mit Leaky Integrate-and-Fire Neuronen wird ein generisches Reflexmodell erstellt und für konkrete Reflexe realisiert. Die erstellten CPGs dienen sowohl der Bewegungsanalyse als auch der -generierung für einen zweibeinigen Demonstrator

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore