6,449 research outputs found

    On inferring intentions in shared tasks for industrial collaborative robots

    Get PDF
    Inferring human operators' actions in shared collaborative tasks, plays a crucial role in enhancing the cognitive capabilities of industrial robots. In all these incipient collaborative robotic applications, humans and robots not only should share space but also forces and the execution of a task. In this article, we present a robotic system which is able to identify different human's intentions and to adapt its behavior consequently, only by means of force data. In order to accomplish this aim, three major contributions are presented: (a) force-based operator's intent recognition, (b) force-based dataset of physical human-robot interaction and (c) validation of the whole system in a scenario inspired by a realistic industrial application. This work is an important step towards a more natural and user-friendly manner of physical human-robot interaction in scenarios where humans and robots collaborate in the accomplishment of a task.Peer ReviewedPostprint (published version

    Interaction Histories and Short-Term Memory: Enactive Development of Turn-Taking Behaviours in a Childlike Humanoid Robot

    Get PDF
    In this article, an enactive architecture is described that allows a humanoid robot to learn to compose simple actions into turn-taking behaviours while playing interaction games with a human partner. The robot’s action choices are reinforced by social feedback from the human in the form of visual attention and measures of behavioural synchronisation. We demonstrate that the system can acquire and switch between behaviours learned through interaction based on social feedback from the human partner. The role of reinforcement based on a short-term memory of the interaction was experimentally investigated. Results indicate that feedback based only on the immediate experience was insufficient to learn longer, more complex turn-taking behaviours. Therefore, some history of the interaction must be considered in the acquisition of turn-taking, which can be efficiently handled through the use of short-term memory.Peer reviewedFinal Published versio

    Robot Swarms in an Uncertain World: Controllable Adaptability

    Full text link
    There is a belief that complexity and chaos are essential for adaptability. But life deals with complexity every moment, without the chaos that engineers fear so, by invoking goal-directed behaviour. Goals can be programmed. That is why living organisms give us hope to achieve adaptability in robots. In this paper a method for the description of a goal-directed, or programmed, behaviour, interacting with uncertainty of environment, is described. We suggest reducing the structural (goals, intentions) and stochastic components (probability to realise the goal) of individual behaviour to random variables with nominal values to apply probabilistic approach. This allowed us to use a Normalized Entropy Index to detect the system state by estimating the contribution of each agent to the group behaviour. The number of possible group states is 27. We argue that adaptation has a limited number of possible paths between these 27 states. Paths and states can be programmed so that after adjustment to any particular case of task and conditions, adaptability will never involve chaos. We suggest the application of the model to operation of robots or other devices in remote and/or dangerous places.Comment: Journal web page & a lot of robotic related papers www.ars-journal.co

    Is Vivaldi smooth and takete? Non-verbal sensory scales for describing music qualities

    Get PDF
    Studies on the perception of music qualities (such as induced or perceived emotions, performance styles, or timbre nuances) make a large use of verbal descriptors. Although many authors noted that particular music qualities can hardly be described by means of verbal labels, few studies have tried alternatives. This paper aims at exploring the use of non-verbal sensory scales, in order to represent different perceived qualities in Western classical music. Musically trained and untrained listeners were required to listen to six musical excerpts in major key and to evaluate them from a sensorial and semantic point of view (Experiment 1). The same design (Experiment 2) was conducted using musically trained and untrained listeners who were required to listen to six musical excerpts in minor key. The overall findings indicate that subjects\u2019 ratings on non-verbal sensory scales are consistent throughout and the results support the hypothesis that sensory scales can convey some specific sensations that cannot be described verbally, offering interesting insights to deepen our knowledge on the relationship between music and other sensorial experiences. Such research can foster interesting applications in the field of music information retrieval and timbre spaces explorations together with experiments applied to different musical cultures and contexts

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Human–Robot Interaction and Sexbots: A Systematic Literature Review

    Get PDF
    At present, sexual robots have become a new paradigm of social robots. In this paper, we developed a systematic literature review about sexual robots (sexbots). To do this, we used the Scopus and WoS databases to answer different research questions regarding the design, interaction, and gender and ethical approaches from 1980 until 2020. In our review, we found a male bias in this discipline, and in recent years, articles have shown that user opinion has become more relevant. Some insights and recommendations on gender and ethics in designing sexual robots were also made

    Developmental learning of internal models for robotics

    No full text
    Abstract: Robots that operate in human environments can learn motor skills asocially, from selfexploration, or socially, from imitating their peers. A robot capable of doing both can be more ~daptiveand autonomous. Learning by imitation, however, requires the ability to understand the actions ofothers in terms ofyour own motor system: this information can come from a robot's own exploration. This thesis investigates the minimal requirements for a robotic system than learns from both self-exploration and imitation of others. .Through self.exploration and computer vision techniques, a robot can develop forward 'models: internal mo'dels of its own motor system that enable it to predict the consequences of its actions. Multiple forward models are learnt that give the robot a distributed, causal representation of its motor system. It is demon~trated how a controlled increase in the complexity of these forward models speeds up the robot's learning. The robot can determine the uncertainty of its forward models, enabling it to explore so as to improve the accuracy of its???????predictions. Paying attention fO the forward models according to how their uncertainty is changing leads to a development in the robot's exploration: its interventions focus on increasingly difficult situations, adapting to the complexity of its motor system. A robot can invert forward models, creating inverse models, in order to estimate the actions that will achieve a desired goal. Switching to socialleaming. the robot uses these inverse model~ to imitate both a demonstrator's gestures and the underlying goals of their movement.Imperial Users onl
    • …
    corecore