158 research outputs found

    Data and the city – accessibility and openness. a cybersalon paper on open data

    Get PDF
    This paper showcases examples of bottom–up open data and smart city applications and identifies lessons for future such efforts. Examples include Changify, a neighbourhood-based platform for residents, businesses, and companies; Open Sensors, which provides APIs to help businesses, startups, and individuals develop applications for the Internet of Things; and Cybersalon’s Hackney Treasures. a location-based mobile app that uses Wikipedia entries geolocated in Hackney borough to map notable local residents. Other experiments with sensors and open data by Cybersalon members include Ilze Black and Nanda Khaorapapong's The Breather, a "breathing" balloon that uses high-end, sophisticated sensors to make air quality visible; and James Moulding's AirPublic, which measures pollution levels. Based on Cybersalon's experience to date, getting data to the people is difficult, circuitous, and slow, requiring an intricate process of leadership, public relations, and perseverance. Although there are myriad tools and initiatives, there is no one solution for the actual transfer of that data

    Human Movement Recognition using Deep Learning on Visualized CSI Wi-Fi data

    Get PDF
    Wireless signal transmission is an intricate process, significantly influenced by the environment within which it operates. Notably, the mobility of various elements within this environment, such as the parts of a human body, distinctly modifies the manner in which these signals are reflected. These alterations subsequently cause changes in Channel State Information (CSI) data captured by Wi-Fi routers. Intriguingly, specific human behaviors can be detected through a meticulous examination of the data streams from CSI. These behaviors, representing diverse activities, can be identified by processing the data streams and juxtaposing them against predefined models. The recognition of these activities hinges on discerning patterns within the CSI data, reflecting the relationship between human movement and the variation in channel state information. A variety of techniques have been developed to explore and understand these patterns, with machine learning emerging as the most popular and effective tool. Machine learning techniques are harnessed to develop sophisticated models capable of correlating variations in channel state information with specific human movements. These correlations enable the prediction and identification of human activities based on changes in CSI data. This research focuses on further exploring this intriguing intersection of human activity, wireless signal processing, and machine learning. It aims to provide a deeper understanding of these correlations and develop more effective models for human activity recognition. More specifically, with this work we attempt to to explore new way of using the CSI data in Deep Learning tasks. That is by using the visualized amplitude of signals and correlate them to certain activities

    Human experience in the natural and built environment : implications for research policy and practice

    Get PDF
    22nd IAPS conference. Edited book of abstracts. 427 pp. University of Strathclyde, Sheffield and West of Scotland Publication. ISBN: 978-0-94-764988-3

    RADIO ANALYTICS FOR HUMAN ACTIVITY MONITORING AND INDOOR TRACKING

    Get PDF
    With the rapid development of the Internet of Things (IoT), wireless sensing has found wide applications from wellbeing monitoring, activity recognition, to indoor tracking. In this dissertation, we investigate the problem of wireless sensing for IoT applications using only ambient radio signals, e.g., WiFi, LTE, and 5G. In particular, our work mainly focuses on passive speed estimation, motion detection, sleep monitoring, and indoor tracking for wireless sensing. In this dissertation, we first study the problem of indoor speed estimation using WiFi channel state information (CSI). We develop the statistical electromagnetic (EM) wave theory for wireless sensing and establish a link between the autocorrelation function (ACF) of the physical layer CSI and the speed of a moving object. Based on the developed statistical EM wave theory for wireless sensing, we propose a universal low-complexity indoor speed estimation system leveraging CSI, which can work in both device-free and device-based situations. The proposed speed estimator differs from the other schemes requiring strong line-of-sight conditions between the source and observer in that it embraces the rich-scattering environment typical for indoors to facilitate highly accurate speed estimation. Moreover, as a calibration-free system, it saves the users' efforts from large-scale training and fine-tuning of system parameters. The proposed speed estimator can enable many IoT applications, e.g., gait monitoring, fall detection, and activity recognition. Then, we also study the problem of indoor motion detection using CSI. The statistical behaviors of the CSI dynamics when motion presents can be characterized by the developed statistical EM theory for wireless sensing. We formulate the motion detection problem as a hypothesis testing problem and also derive the relationship between the detection rate and false alarm rate for motion detection, which is independent of locations, environments and motion types. Thus, the proposed motion detection system can work in most indoor environments, without any scenario-tailored training efforts. Extensive experiments conducted in several facilities show that the proposed system can achieve better detection performance compared to the existing CSI-based motion detection systems while maintaining a much larger coverage and a much lower false alarm rate. This dissertation also focuses on sleep monitoring using CSI. First, we build a statistical model for maximizing the signal-to-noise (SNR) ratio of breathing signal, which accounts for all reflecting and scattering multipaths, allowing highly accurate and instantaneous breathing estimation with best-ever performance achieved on commodity devices. Our results demonstrate that the proposed breathing estimator yields a median absolute error of 0.47 bpm and a 95%-tile error of only 2.92 bpm for breathing estimation, and detects breathing robustly even when a person is 10m away from the WiFi link, or behind a wall. Then, we apply machine learning algorithms on the extracted features from the estimated breathing rates to classify different sleep stages, including wake, rapid eye movement (REM), and non-REM (NREM), which was previously only possible with dedicated hardware. Experimental results show that the proposed sleep monitoring system achieves sleep staging accuracy of 88%, outperforming advanced solutions using contact sensor or radar. The last work of this dissertation considers the problem of indoor tracking using CSI. First, we leverage a stationary and location-independent property of the time-reversal (TR) focusing effect of radio signals for highly accurate moving distance estimation, which plays a key role in the proposed indoor tracking system. Together with the direction estimation based on inertial measurement unit and location correction using the constraints from the floorplan, the proposed indoor tracking system is shown to be able to track a moving object with decimeter-level accuracy in different environments

    City of Bell: General Plan, Fall 2012/ Winter 2013

    Get PDF
    The City of Bell, a charter city of Los Angeles County, is a densely-developed community located approximately eight miles southeast of Downtown Los Angeles. The City is composed of two distinct districts; the original “center city” is the residential and commercial core of the City, while industrial uses are concentrated in the Cheli Industrial Area to the northeast. The two districts are connected by a narrow strip of land along the Los Angeles River and the I-710 Freeway. Bell is relatively small in area—2.81 square miles, or 1,798 acres. With a population of 35,477 in 2010, its population density is approximately 19.7 persons per acre. 90% of its residents are Hispanic or Latino, and modest population growth is predicted over the next decade. The City’s land use patterns are similar to those of other “inner-ring” suburbs in the Los Angeles region, characterized by established single-family residential neighborhoods, commercial corridors, and industrial centers. Because the City contains very little vacant land for new development, future development will take the form of redevelopment, infill projects, and adaptive building reuse

    Improving human movement sensing with micro models and domain knowledge

    Get PDF
    Human sensing is concerned with techniques for inferring information about humans from various sensing modalities. Examples of human sensing applications include human activity (or action) recognition, emotion recognition, tracking and localisation, identification, presence and motion detection, occupancy estimation, gesture recognition, and breath rate estimation. The first question addressed in this thesis is whether micro or macro models are a better design choice for human sensing systems. Micro models are models exclusively trained with data from a single entity, such as a Wi-Fi link, user, or other identifiable data-generating component. We consider micro and macro models in two human sensing applications, viz. Human Activity Recognition (HAR) from wearable inertial sensor data and device-free human presence detection from Wi-Fi signal data. The HAR literature is dominated by person-independent macro models. The few empirical studies that consider both micro and macro models evaluate them with either only one data-set or only one HAR algorithm, and report contradictory results. The device-free sensing literature is dominated by link-specific micro models, and the few papers that do use macro models do not evaluate their micro counterparts. Given the little and contradictory evidence, it remains an open question whether micro or macro models are a better design choice. We evaluate person-specific micro and person-independent macro models across seven HAR benchmark data-sets and four learning algorithms. We show that person-specific models (PSMs) significantly outperform the corresponding person-independent model (PIM) when evaluated with known users. To apply PSMs to data from new users, we propose ensembles of PSMs, which are improved by weighting their constituent PSMs according to their performance on other training users. We propose link-specific micro models to detect human presence from ambient Wi-Fi signal data. We select a link-specific model from the available training links, and show that this approach outperforms multi-link macro models. The second question addressed in this thesis is whether human sensing methods can be improved with domain knowledge. Specifically, we propose expert hierarchies (EHs) as an intuitive way to encode domain knowledge and simplify multi-class HAR, without negatively affecting predictive performance. The advantages of EHs are that they have lower time complexity than domain-agnostic methods and that their constituent classifiers are statistically independent. This property enables targeted tuning, and modular and iterative development of increasingly fine-grained HAR. Although this has inspired several uses of domain-specific hierarchical classification for HAR applications, these have been ad-hoc and without comparison to standard domain-agnostic methods. Therefore, it remains unclear whether they carry a penalty on predictive performance. We design five EHs and compare them to the best-known domain-agnostic methods. Our results show that EHs indeed can compete with more popular multi-class classification methods, both on the original multi-class problem and on the EHs' topmost levels

    Creative Interactions – The Mobile Music Workshops 2004-2008

    Get PDF

    Sensory Urbanism Proceedings 2008

    Get PDF
    This book contains papers from the January 2008 conference, Sensory Urbanism, held by the University of Strathclyde, Glasgow, UK. Papers deal with issues surrounding the sensory perception of urban design and how to design better for all the senses. The book is illustrated throughout, and contains 26 papers from fields including architecture, urban design, environmental psychology, urban design, planning, sound design and more
    • …
    corecore