89 research outputs found

    Imaging photoplethysmography: towards effective physiological measurements

    Get PDF
    Since its conception decades ago, Photoplethysmography (PPG) the non-invasive opto-electronic technique that measures arterial pulsations in-vivo has proven its worth by achieving and maintaining its rank as a compulsory standard of patient monitoring. However successful, conventional contact monitoring mode is not suitable in certain clinical and biomedical situations, e.g., in the case of skin damage, or when unconstrained movement is required. With the advance of computer and photonics technologies, there has been a resurgence of interest in PPG and one potential route to overcome the abovementioned issues has been increasingly explored, i.e., imaging photoplethysmography (iPPG). The emerging field of iPPG offers some nascent opportunities in effective and comprehensive interpretation of the physiological phenomena, indicating a promising alternative to conventional PPG. Heart and respiration rate, perfusion mapping, and pulse rate variability have been accessed using iPPG. To effectively and remotely access physiological information through this emerging technique, a number of key issues are still to be addressed. The engineering issues of iPPG, particularly the influence of motion artefacts on signal quality, are addressed in this thesis, where an engineering model based on the revised Beer-Lambert law was developed and used to describe opto-physiological phenomena relevant to iPPG. An iPPG setup consisting of both hardware and software elements was developed to investigate its reliability and reproducibility in the context of effective remote physiological assessment. Specifically, a first study was conducted for the acquisition of vital physiological signs under various exercise conditions, i.e. resting, light and heavy cardiovascular exercise, in ten healthy subjects. The physiological parameters derived from the images captured by the iPPG system exhibited functional characteristics comparable to conventional contact PPG, i.e., maximum heart rate difference was <3 bpm and a significant (p < 0.05) correlation between both measurements were also revealed. Using a method for attenuation of motion artefacts, the heart rate and respiration rate information was successfully assessed from different anatomical locations even in high-intensity physical exercise situations. This study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, showing clear and promising applications in clinical triage and sports training. A second study was conducted to remotely assess pulse rate variability (PRV), which has been considered a valuable indicator of autonomic nervous system (ANS) status. The PRV information was obtained using the iPPG setup to appraise the ANS in ten normal subjects. The performance of the iPPG system in accessing PRV was evaluated via comparison with the readings from a contact PPG sensor. Strong correlation and good agreement between these two techniques verify the effectiveness of iPPG in the remote monitoring of PRV, thereby promoting iPPG as a potential alternative to the interpretation of physiological dynamics related to the ANS. The outcomes revealed in the thesis could present the trend of a robust non-contact technique for cardiovascular monitoring and evaluation

    IoT DEVELOPMENT FOR HEALTHY INDEPENDENT LIVING

    Get PDF
    The rise of internet connected devices has enabled the home with a vast amount of enhancements to make life more convenient. These internet connected devices can be used to form a community of devices known as the internet of things (IoT). There is great value in IoT devices to promote healthy independent living for older adults. Fall-related injuries has been one of the leading causes of death in older adults. For example, every year more than a third of people over 65 in the U.S. experience a fall, of which up to 30 percent result in moderate to severe injury. Therefore, this thesis proposes an IoT-based fall detection system for smart home environments that not only to send out alerts, but also launches interaction models, such as voice assistance and camera monitoring. Such connectivity could allow older adults to interact with the system without concern of a learning curve. The proposed IoT-based fall detection system will enable family and caregivers to be immediately notified of the event and remotely monitor the individual. Integrated within a smart home environment, the proposed IoT-based fall detection system can improve the quality of life among older adults. Along with the physical concerns of health, psychological stress is also a great concern among older adults. Stress has been linked to emotional and physical conditions such as depression, anxiety, heart attacks, stroke, etc. Increased susceptibility to stress may accelerate cognitive decline resulting in conversion of cognitively normal older adults to MCI (Mild Cognitive Impairment), and MCI to dementia. Thus, if stress can be measured, there can be countermeasures put in place to reduce stress and its negative effects on the psychological and physical health of older adults. This thesis presents a framework that can be used to collect and pre-process physiological data for the purpose of validating galvanic skin response (GSR), heart rate (HR), and emotional valence (EV) measurements against the cortisol and self-reporting benchmarks for stress detection. The results of this framework can be used for feature extraction to feed into a regression model for validating each combination of physiological measurement. Also, the potential of this framework to automate stress protocols like the Trier Social Stress Test (TSST) could pave the way for an IoT-based platform for automated stress detection and management

    Emotional AI and EdTech: Serving the Public Good?

    Get PDF

    Mobile Thermography-based Physiological Computing for Automatic Recognition of a Person’s Mental Stress

    Get PDF
    This thesis explores the use of Mobile Thermography1, a significantly less investigated sensing capability, with the aim of reliably extracting a person’s multiple physiological signatures and recognising mental stress in an automatic, contactless manner. Mobile thermography has greater potentials for real-world applications because of its light-weight, low computation-cost characteristics. In addition, thermography itself does not necessarily require the sensors to be worn directly on the skin. It raises less privacy concerns and is less sensitive to ambient lighting conditions. The work presented in this thesis is structured through a three-stage approach that aims to address the following challenges: i) thermal image processing for mobile thermography in variable thermal range scenes; ii) creation of rich and robust physiology measurements; and iii) automated stress recognition based on such measurements. Through the first stage (Chapter 4), this thesis contributes new processing techniques to address negative effects of environmental temperature changes upon automatic tracking of regions-of-interest and measuring of surface temperature patterns. In the second stage (Chapters 5,6,7), the main contributions are: robustness in tracking respiratory and cardiovascular thermal signatures both in constrained and unconstrained settings (e.g. respiration: strong correlation with ground truth, r=0.9987), and investigation of novel cortical thermal signatures associated with mental stress. The final stage (Chapters 8,9) contributes automatic stress inference systems that focus on capturing richer dynamic information of physiological variability: firstly, a novel respiration representation-based system (which has achieved state-of-the-art performance: 84.59% accuracy, two stress levels), and secondly, a novel cardiovascular representation-based system using short-term measurements of nasal thermal variability and heartrate variability from another sensing channel (78.33% accuracy achieved from 20seconds measurements). Finally, this thesis contributes software libraries and incrementally built labelled datasets of thermal images in both constrained and everyday ubiquitous settings. These are used to evaluate performance of our proposed computational methods across the three-stages

    Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethysmography and Thermal Imaging

    Get PDF
    Background: A smartphone is a promising tool for daily cardiovascular measurement and mental stress monitoring. A smartphone camera-based PhotoPlethysmoGraphy (PPG) and a low-cost thermal camera can be used to create cheap, convenient and mobile monitoring systems. However, to ensure reliable monitoring results, a person has to remain still for several minutes while a measurement is being taken. This is very cumbersome and makes its use in real-life mobile situations quite impractical. // Objective: We propose a system which combines PPG and thermography with the aim of improving cardiovascular signal quality and capturing stress responses quickly. // Methods: Using a smartphone camera with a low cost thermal camera added on, we built a novel system which continuously and reliably measures two different types of cardiovascular events: i) blood volume pulse and ii) vasoconstriction/dilation-induced temperature changes of the nose tip. 17 healthy participants, involved in a series of stress-inducing mental workload tasks, measured their physiological responses to stressors over a short window of time (20 seconds) immediately after each task. Participants reported their level of perceived mental stress using a 10-cm Visual Analogue Scale (VAS). We used normalized K-means clustering to reduce interpersonal differences in the self-reported ratings. For the instant stress inference task, we built novel low-level feature sets representing variability of cardiovascular patterns. We then used the automatic feature learning capability of artificial Neural Networks (NN) to improve the mapping between the extracted set of features and the self-reported ratings. We compared our proposed method with existing hand-engineered features-based machine learning methods. // Results: First, we found that the measured PPG signals presented high quality cardiac cyclic information (relative power Signal Quality Index, pSQI: M=0.755, SD=0.068). We also found that the measured thermal changes of the nose tip presented high quality breathing cyclic information and filtering helped extract vasoconstriction/dilation-induced patterns with fewer respiratory effects (respiratory pSQI: from M=0.714 to M=0.157). Second, we found low correlations between the self-reported stress scores and the existing metrics of the two cardiovascular signals (i.e. heart rate variability and thermal directionality metrics) from short measurements, suggesting they were not very dependent upon one another. Third, we tested the performance of the instant perceived stress inference method. The proposed method achieved significantly higher accuracies than existing pre-crafted features based-methods. In addition, the 17-fold Leave-One-Subject-Out (LOSO) cross-validation results showed that combination of both modalities produced higher accuracy in comparison with the use of PPG or thermal imaging only (PPG+Thermal: 78.33%; PPG: 68.53%; Thermal: 58.82%). The multimodal results are comparable to the state-of-the-art automatic stress recognition methods that require long term measurements (usually, at least a period of 2 minutes is required for an accuracy of around 80% from LOSO). Lastly, we explored effects of different widely-used data labeling strategies on the sensitivity of our inference methods. Our results showed the need for separation of and normalization between individual data. // Conclusions: Results demonstrate the feasibility of using smartphone-based imaging for instant mental stress recognition. Given that this approach does not need long-term measurements requiring attention and reduced mobility, we believe it is more suitable for mobile mental healthcare solutions in the wild

    Signal Processing Contributions to Contactless Monitoring of Vital Signs Using Radars

    Get PDF
    Vital signs are a group of biological indicators that show the status of the body’s life-sustaining functions. They provide an objective measurement of the essential physiological functions of a living organism, and their assessment is the critical first step for any clinical evaluation. Monitoring vital sign information provides valuable insight into the patient's condition, including how they are responding to medical treatment and, more importantly, whether the patient is deteriorating. However, conventional contact-based devices are inappropriate for long-term continuous monitoring. Besides mobility restrictions and stress, they can cause discomfort, and epidermal damage, and even lead to pressure necrosis. On the other hand, the contactless monitoring of vital signs using radar devices has several advantages. Radar signals can penetrate through different materials and are not affected by skin pigmentation or external light conditions. Additionally, these devices preserve privacy, can be low-cost, and transmit no more power than a mobile phone. Despite recent advances, accurate contactless vital sign monitoring is still challenging in practical scenarios. The challenge stems from the fact that when we breathe, or when the heart beats, the tiny induced motion of the chest wall surface can be smaller than one millimeter. This means that the vital sign information can be easily lost in the background noise, or even masked by additional body movements from the monitored subject. This thesis aims to propose innovative signal processing solutions to enable the contactless monitoring of vital signs in practical scenarios. Its main contributions are threefold: a new algorithm for recovering the chest wall movements from radar signals; a novel random body movement and interference mitigation technique; and a simple, yet robust and accurate, adaptive estimation framework. These contributions were tested under different operational conditions and scenarios, spanning ideal simulation settings, real data collected while imitating common working conditions in an office environment, and a complete validation with premature babies in a critical care environment. The proposed algorithms were able to precisely recover the chest wall motion, effectively reducing the interfering effects of random body movements, and allowing clear identification of different breathing patterns. This capability is the first step toward frequency estimation and early non-invasive diagnosis of cardiorespiratory problems. In addition, most of the time, the adaptive estimation framework provided breathing and heart rate estimates within the predefined error intervals, being capable of tracking the reference values in different scenarios. Our findings shed light on the strengths and limitations of this technology and lay the foundation for future studies toward a complete contactless solution for vital signs monitoring
    • …
    corecore