11,562 research outputs found

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Potential Applications of Active Antenna Technologies for Emerging NASA Space Communications Scenarios

    Get PDF
    AbstractThe National Aeronautics and Space Administration (NASA) is presently embarking on the implementation of far-reaching changes within the framework of both space and aeronautics communications architectures. For example, near earth relays are looking to transition from the traditional few large geostationary satellites to satellite constellations consisting of thousands of small low earth orbiting satellites while lunar space communications will require the need to relay data from many assets distributed on the lunar surface back to earth. Furthermore, within the aeronautics realm, satellite communications for beyond line of sight (BLOS) links are being investigated in tandem with the proliferation of unmanned aerial systems (UAS) within the urban air mobility (UAM) environment. In all of these scenarios, future communications architectures will demand the need to connect and quickly transition between many nodes for large data volume transport. As such, NASA Glenn Research Center (GRC) has been heavily investigating the development of low cost phased array technologies that can readily address these various scenario conditions. In particular, GRC is presently exploring 5G-based beamformer technologies to leverage commercial timescale and volume production cycles which have heretofore not existed within the frequency allocations utilized for NASA applications. In this paper, an overview of the potential future applications of phased arrays being envisioned by NASA are discussed, along with technology feasibility demonstrations being conducted by GRC implementing low cost, 5G based beamformer technologies

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide
    corecore