305 research outputs found

    Modelling and controlling infectious diseases

    Get PDF
    The financial support by IDRC has made it much easier to put together network activities involving scientists in both countries, a special example is the large presence of the Chinese students in the 2012 Summer School on Mathematics for Public Health the Canadian group organized in Edmonton in May of 2012.Infectious disease control is a major challenge in China due to China’s fast growing economy, changing social networks and evolving health service infrastructures. The success of disease control in China has a profound impact beyond its borders. In support of better disease control, this five year research program was designed to enhance China’s national capacity for analyzing, modeling and predicting transmission dynamics of infectious diseases through joint research, training young scientists, and building collaborative relationships. This successful program was led by the National Center for AIDS/STD Control and Prevention (Chinese Centre for Disease Control and Prevention, China) and the Centre for Disease Modeling (York University, Canada), and involved a number of Canadian and Chinese universities in various areas of infectious disease modelling and control. The bilateral collaboration also trained numerous highly qualified personnel and built a network for sustaining collaboration. This capacity building was facilitated by joint projects and bilateral annual meetings in major cities in China and Canada. The research activities on modeling major public health threats of infectious diseases focused on major diseases in China and/or issues of global public health concern including HIV transmission and prevention among high risk population, HIV treatment and drug resistance, influenza, schistosomiasis, mutation and stemma of SIV and HIV, latent and active tuberculosis infection, HBV control and vaccination. The outputs of the project were reported through peer-reviewed publications and modelling– based and science-informed public policy recommendations

    A multiscale systems pharmacology framework to assess the prophylactic utility of antivirals against HIV-1

    Get PDF
    Pre-exposure prophylaxis (PrEP) has recently been identified as one of the five pillars by UNAIDS to achieve the goal of reducing the new infections to approximately 500,000 by 2020. Truvada is the only medication that is approved for PrEP. Although PrEP with Truvada is beneficial, there are a number of limitations. There are a number of novel compounds and treatment-approved antivirals that might overcome these limitations. The challenge is to screen for potential candidates and to design roll-out strategies. Pre-clinical experiments are very insightful but owning to a number of limitations they do not readily guide the candidate-screening and the designing deployment strategies. Although clinical trials provide these answers, they are ethically problematic and prohibitively costly. This highlights that tools are urgently needed that can determine the prophylactic utility of antivirals in order to prioritize candidates and to design the deployment strategies. To this end, we built a mathematical framework (pipeline) to serve as a tool to predict the prophylactic utility of antivirals. Building such a framework for PrEP is a challenging task, which requires solving modelling and simulation problems owing to the various complex processes occurring at different scales (multiscale). We presented the multiscale systems pharmacology framework that integrates processes occurring at various scales including; 1) microscale interactions of active moiety of NRTIs with viral DNA polymerization; 2) meso- and macroscale processes, such as the drug pharmacokinetics, viral replication dynamics; and 3) population scale processes, such as viral exposure and long-term infection probabilities after repeated virus exposures, similar to a clinical trial. The main algorithmic challenge considered in the work is the task of quantifying the infection probability after a viral challenge within a host under the influence of antiviral pharmacokinetics. Time-invariant reaction propensities are valid for constant target-site antiviral concentrations. We employed the theory of branching processes to derive extinction and infection probabilities for time-invariant reaction propensities. However, for time-varying antiviral concentrations at the target-site, the reaction propensities are time-variant. For time-variant reaction propensities, we introduced the reduced-state chemical master equation as an approximation. Furthermore, we adapted the recently developed rejection-based stochastic simulation algorithm. We tackled the challenge of the classification of stochastic trajectories as infection or extinction events which improves the run-time of the algorithm and at the same time guarantees that the misclassification error is below the user-defined threshold. In this work, we derived drug-class specific concentration-prophylactic efficacy (dose-response) curves. The framework allows for the translation of in vitro and ex vivo parameters into the measure of in vivo potency/efficacy. We analyzed all the treatment-approved antivirals for PrEP using the framework. We quantified the role of TDF and FTC and emphasized their complementary roles in the Truvada combination for PrEP. Furthermore, we suggested cost-effective alternatives, such as lamivudine, efavirenz, nevirapine etc. Using the pharmacokinetic model of DTG, we analyzed various roll-out scheme and found that it is non-inferior to truvada.Die HIV-Epidemie ist nach wie vor ein globales Problem. WĂ€hrend die Suche nach einer Heilung und einem Impfstoff weitergeht, hat sich das Hauptaugenmerk auf antiretrovirale PrĂ€ventionsstrategien zur EindĂ€mmung der Epidemie gelegt. Eine solche Strategie ist die sogenannte PrĂ€expositionsprophylaxe (PrEP), die kĂŒrzlich von UNAIDS als eine der fĂŒnf SĂ€ulen zur PrĂ€vention identifiziert wurde. Dabei ist Truvada das einzige fĂŒr PrEP zugelassen Medikament. Obwohl der Einsatz von Truvada Erfolge gezeigt hat, bestehen einige EinschrĂ€nkungen. Eine Reihe neuartiger Wirkstoffe und behandlungserprobter antiviraler Mittel, die noch nicht zur PrEP Behandlung eingesetzt werden, könnten diese EinschrĂ€nkungen bewĂ€ltigen. Die große Aufgabe besteht darin, unter diesen Wirkstoffen potenzielle PrEP Kandidaten aus- findig zu machen und Einsatzstrategien zu entwickeln. PrĂ€klinische Experimente liefern hierbei nicht genĂŒgend Ergebnisse um ein Kandidaten-Screening vorzunehmen und klinische Studien sind ethisch problematisch und sehr kostspielig, da Tausende von Personen ĂŒber mehrere Jahre hinweg beobachtet und untersucht werden mĂŒssen. Als Hilfestellung haben wir ein Systempharmakologie- Framework entwickelt, welches es ermöglicht, den prophylaktischen Nutzen von antiviralen Medikamenten zu bestimmen, Medikamenten-Kandidaten zu priorisieren und Einsatzstrategien zu entwerfen. Um ein solches Framework zu entwickeln mĂŒssen verschiedene Modellierungs- und die Simulationensprobleme gelöst werden, da bei der PrEP komplexe Prozesse verschiedene GrĂ¶ĂŸenordnungen (Multiskala) involviert sind. Das Framework integriert flexibel Prozesse: (1) molekularen Interaktionen zwischen dem Medikament und den viralen Enzymen auf der mikroskalen Ebene (2) antivirale Pharmakokinetik, Pharmakodynamik (viraler Replikationszyklus) auf den mesoskalen und makroskalen Ebenen und (3) populationsebene Prozesse wie virale Exposition und die InfektionswĂ€hrscheinlichkeit nach vermehrter viraler Exposition; Prozesse, wie sie auch in klinischen Studien auftreten können. Eine der grĂ¶ĂŸten algorithmischen Herausforderungen, die in dieser Arbeit bewĂ€ltigt wurde, ist die Quantifizierung der InfektionswĂ€hrscheinlichkeit. Wir haben mit Hilfe der Theorie des Verzweigungsprozesses die Formeln fĂŒr eine zeitkonstante Wirkstoffkonzentration am Zielort abgeleitet. FĂŒr die zeitvariable Wirkstoffkonzentration am Zielort haben wir eine chemische Master-Gleichung mit reduziertem Zustand eingefĂŒhrt und einen stochastischen Algorithmus (EXTRANDE) adaptiert, die das Problem der DimensionalitĂ€t der chemische Master-Gleichung umgehen. Das Framework ermöglicht es prĂ€klinisches Wissen in Parameter klinischer Relevanz zu ĂŒber- setzen. Dabei hilft es unnötige klinische Studien zu vermeiden, die nicht nur Geld und Zeit kosten, sondern auch das Risiko bergen, dass Menschen Schaden nehmen. Mithilfe dieses Frameworks haben wir alle bisherigen fĂŒr die HIV-behandlung zugelassenen Medikamenten zum PrĂ€ventionszweck ĂŒberprĂŒft. Wir haben die komplementĂ€re Rolen von Tenofovir Disoproxil Fumarate and Emtricitabine fĂŒr PrEP erklĂ€rt. DarĂŒber hinaus haben wir einige kostengĂŒnstige Alternative (Lamivudine, Nevirapine, Efavirenz u.a.) zu Truvada fĂŒr weiter ÜberprĂŒfung vorgeschlagen. Außerdem hat unsere Analyse gezeigt, dass Dolutegravir Truvada nicht unterlegen ist

    Contributions to the Mathematical Systems Medicine of Antimicrobial Therapy and Genotype-Phenotype Inference.

    Get PDF
    The following summary of my publications describes the main ideas in the corresponding research articles and clarfifies my contribution in multi-author publications. I decided to apply for habilitation according to x2.I.1.(c) of the Habilitationsordnung (this path is usually referred as Kumulative Habilitation"). I selected 13 first- or last author publications for this habilitation that concern contributions to the mathematical systems medicine of antiviral therapy [tMH10, tMS+11, FtK+11, tMMS12, DSt12, DWSt15, Dt16, DSt16, DDKt18, DSD+19, DDKt19], as well as inference of genotype-phenotype associations [SDH+15, SSJ+18]. The selected publications represent my major contributions in this research eld since submitting my doctoral thesis in September 2009

    When to Initiate, When to Switch, and How to Sequence HIV Therapies: A Markov Decision Process Approach

    Get PDF
    HIV and AIDS are major health care problems throughout the world,with 40 million people living with HIV by the end of 2005. Inthat year alone, 5 million people acquired HIV, and 3 millionpeople died of AIDS. For many patients, advances in therapies overthe past ten years have changed HIV from a fatal disease to achronic, yet manageable condition. The purpose of thisdissertation is to address the challenge of effectively managingHIV therapies, with a goal of maximizing a patient's totalexpected lifetime or quality-adjusted lifetime.Perhaps the most important issue in HIV care is when a patientshould initiate therapy. Benefits of delaying therapy includeavoiding the negative side effects and toxicities associated withthe drugs, delaying selective pressures that induce thedevelopment of resistant strains of the virus, and preserving alimited number of treatment options. On the other hand, the risksof delayed therapy include the possibility of irreversible damageto the immune system, development of AIDS-related complications,and death. We develop a Markov decision process (MDP) model thatexamines this question, and we solve it using clinical data.Because of the development of resistance to administered therapiesover time, an extension to the initiation question arises: whenshould a patient switch therapies? Also, inherent in both theinitiation and switching questions is the question of whichtherapy to use each time. We develop MDP models that consider theswitching and sequencing problems, and we discuss the challengesinvolved in solving these models

    Mathematical models of HIV epidemics in Australia and South East Asia

    Full text link
    This thesis consists of a series of publications that address timely public health questions in the field of mathematical epidemiology of HIV/AIDS and sexually transmissible infections (STIs). Mathematical epidemiology requires the forecasting of epidemic trajectories coupled with degrees of uncertainty. This study commenced with the development of new software and utilisation of techniques from a variety of disciplines to assist the conduct of uncertainty and sensitivity analyses. A user-friendly software package was developed and also used in the subsequent projects of this study. The number of HIV diagnoses in Australia has been increasing over the past decade and it was timely for a detailed analysis to be conducted. This study investigated the differing trends observed in three States of Australia: New South Wales, Queensland, and Victoria. The model included epidemiological, clinical, behavioural, and biological data to analyse and identify the differences in each State. It found that the only way to fit the data was to incorporate changes in other STIs as interactive biological cofactors. This model was then extended to examine the impact of testing and early treatment of HIV as a means of preventing new HIV infections. It was found that increasing testing rates for HIV can have a significant impact on reducing further secondary infections. This has since become a topic of very large international interest. Since syphilis epidemics have resurged and could facilitate HIV transmission, possible public health intervention strategies were simulated using a detailed individual-based model. This formed the foundation for Australia’s National Gay Men’s Syphilis Action Plan (NGMSAP). This study then examined the potential benefits in HIV incidence that could be due to the implementation of the NGMSAP. Lastly, this study examined an important current issue for neighbouring countries in the region, namely, the impact of universal HIV treatment access in Southeast Asia on the development of drug resistance. This model-based investigation found that a high prevalence of drug resistance can potentially develop, however, increased treatment access will likely reduce the incidence of new HIV infections. It also found that regular viral load tests can mitigate the prevalence of drug resistance in the population

    Predicting the outcomes of HIV treatment interruptions using computational modelling

    Get PDF
    In the past 30 years, HIV infection made a transition from fatal to chronic disease due to the emergence of potent treatment largely suppressing viral replication. However, this medication must be administered life-long on a regular basis to maintain viral suppression and is not always well tolerated. Any interruption of treatment causes residual virus to be reactivated and infection to progress, where the underlying processes occurring and consequences for the immune system are still poorly understood. Nonetheless, treatment interruptions are common due to adherence issues or limited access to antiretroviral drugs. Early clinical studies, aiming at application of treatment interruptions in a structured way, gave contradictory results concerning patient safety, discouraging further trials. In-silico models potentially add to knowledge but a review of the Literature indicates most current models used for studying treatment interruptions (equation-based), neglect recent clinical findings of collagen formation in lymphatic tissue due to HIV and its crucial role in immune system stability and efficacy. The aim of this research is the construction and application of so-called ‘Bottom-Up’ models to allow improved assessment of these processes in relation to HIV treatment interruptions. In this regard, a novel computational model based on 2D Cellular Automata for lymphatic tissue depletion and associated damage to the immune system was developed. Hence, (i) using this model, the influence of spatial distribution of collagen formation on HIV infection progression speed was evaluated while discussing aspects of computational performance. Further, (ii) direct Monte Carlo simulations were employed to explore the accumulation of tissue impairment due to repeated treatment interruptions and consequences for long-term prognosis. Finally, (iii) an inverse Monte Carlo approach was used to reconstruct yet unknown characteristics of patient groups. This is based on sparse data from past clinical studies on treatment interruptions with the aim of explaining their contradictory results

    In-vivo dynamics of HIV-1 evolution

    Get PDF
    Ph. D, Faculty of Science, University of Witwatersrand, 2011The evolution of drug resistance in human immunodeficiency virus (HIV) infection has been a focus of research in many fields, as it continues to pose a problem to disease prevention and HIV patient management. In addition to techniques of molecular biology, studies in mathematical modelling have contributed to the knowledge here, but many questions remain unanswered. This thesis explores the application of a number of hybrid stochastic/deterministic models of viral replication to scenarios where viral evolution may be clinically or epidemiologically important. The choice of appropriate measures of viral evolution/diversity is non-trivial, and this impacts on the choice of mathematical techniques deployed. The use of probability generating functions to describe mutations occurring during early infection scenarios suggest that very early interventions such as pre-exposure prophylaxis (PrEP) or vaccines may substantially reduce viral diversity in cases of breakthrough infection. A modified survival analysis coupled to a deterministic model of viral replication during transient and chronic treatment helps identify clinically measurable indicators of the time it takes for deleterious rare mutations to appear. Lastly, persistence of problematic mutations is studied through the use of deterministic models with stochastic averaging over initial conditions

    Effet des antirĂ©troviraux sur la pathogĂ©nĂšse du VIH : une Ă©tude par modĂ©lisation mathĂ©matique intĂ©grant la cinĂ©tique du virus, de l’immunitĂ©, du mĂ©dicament, et le comportement d’adhĂ©sion avec leurs variabilitĂ©s interindividuelles

    Full text link
    Les traitements antirĂ©troviraux actuels permettent Ă  beaucoup de patients du VIH de maintenir leurs charges virales Ă  de trĂšs faibles niveaux sur plusieurs dĂ©cennies. Or, malgrĂ© ce succĂšs scientifique, de nombreux problĂšmes persistent, et Ă  ce jour, aucun traitement ne permet de venir Ă  bout du virus. Une prise Ă  vie d’antirĂ©troviraux est donc nĂ©cessaire, impliquant ainsi des contraintes posologiques pour le patient, une potentielle atteinte Ă  sa qualitĂ© de vie et un fardeau financier pour la sociĂ©tĂ©. À ces inconvĂ©nients s’ajoute le risque de dĂ©velopper de la rĂ©sistance aux mĂ©dicaments. MĂȘme si les traitements demeurent efficaces, la persistance du virus peut Ă©galement causer des dommages aux diffĂ©rents tissus et organes de l’hĂŽte. En se basant sur des connaissances de pointe dans le domaine du VIH, cette thĂšse aborde ces problĂ©matiques par une approche de pharmacologie quantitative des systĂšmes, appuyĂ©e par des donnĂ©es cliniques. L’objectif principal fut d’informer les mĂ©canismes sous-jacents au dĂ©veloppement de la rĂ©sistance et Ă  la persistance du virus in vivo. Nous avons tirĂ© profit d’un maximum d’information sur l’ensemble des composantes impliquĂ©es dans la rĂ©ponse virologique aux mĂ©dicaments. Les modĂšles que nous avons dĂ©veloppĂ©s joignent diffĂ©rentes Ă©chelles d’information, allant de l’échelle molĂ©culaire, Ă  virale, puis cellulaire, jusqu’au niveau clinique. Nous avons ensuite Ă©valuĂ© la cohĂ©rence d’hypothĂšses de causalitĂ© aux phĂ©nomĂšnes Ă©tudiĂ©s en testant la capacitĂ© de ces modĂšles Ă  expliquer et reproduire des donnĂ©es empiriques. En premier lieu, nous avons dĂ©veloppĂ© un modĂšle visant Ă  mieux comprendre l’ampleur du dĂ©veloppement de la rĂ©sistance chez les patients sous plusieurs traitements. Le modĂšle combine plusieurs composantes, dont la cinĂ©tique virale, l’immunitĂ©, la pharmacocinĂ©tique et pharmacodynamique, l’adhĂ©sion au mĂ©dicament ainsi que leurs variabilitĂ©s interindividuelles. Les prĂ©dictions du modĂšle in silico concordent avec les observations cliniques d’échec virologique pour les trois traitements considĂ©rĂ©s et qui font intervenir l’efavirenz, l’emtricitabine, le tĂ©nofovir, le darunavir et le ritonavir. Par cette approche intĂ©grative, nous avons remĂ©diĂ© Ă  la lacune des modĂšles prĂ©cĂ©dents qui sous-estimaient grandement le risque de rĂ©sistance. Nos rĂ©sultats soulignent le rĂŽle important que joue la faible pĂ©nĂ©tration des mĂ©dicaments au niveau des ganglions lymphatiques dans le dĂ©veloppement de la rĂ©sistance. Ce modĂšle se veut prometteur de son utilitĂ© dans la prĂ©diction de rĂ©ponse virologique en clinique. Nous nous sommes ensuite intĂ©ressĂ©s au phĂ©nomĂšne du dĂ©clin en diffĂ©rentes phases, de plus en plus lentes, des charges virales des patients sous traitement antirĂ©troviral. Les causes sous-jacentes Ă  ce phĂ©nomĂšne restent encore obscures. Une divergence d’opinions sur le rĂŽle de la faible pĂ©nĂ©tration tissulaire des mĂ©dicaments quant Ă  l’existence de ces phases, divise actuellement les efforts de recherche. Afin de mettre la lumiĂšre sur cette implication, nous avons ajoutĂ© Ă  notre modĂšle intĂ©gratif des taux diffĂ©rents de pĂ©nĂ©tration tissulaire. Nos rĂ©sultats indiquent que l’implication seule de la pĂ©nĂ©tration des mĂ©dicaments dans l’explication des phases de dĂ©clin serait synonyme d’un grand risque de dĂ©veloppement de rĂ©sistance. Ces prĂ©dictions contredisent quantitativement la rĂ©alitĂ© observĂ©e (peu de rĂ©sistance), nous faisant conclure que cette hypothĂšse ne peut vraisemblablement pas expliquer le phĂ©nomĂšne en question. La derniĂšre partie de la thĂšse se penche sur la capacitĂ© de certains patients Ă  maintenir de faibles charges virales aprĂšs l’interruption d’un traitement prolongĂ©. Nous avons revisitĂ© une corrĂ©lation rapportĂ©e entre la charge virale rĂ©siduelle et la durĂ©e de maintien post-interruption de charges faibles. L’interprĂ©tation de cette corrĂ©lation s’avĂšre difficile, puisque la durĂ©e en question n’inclut pas seulement le temps de contrĂŽle de la virĂ©mie, mais Ă©galement le temps nĂ©cessaire Ă  la charge virale d’atteindre un seuil de tolĂ©rance Ă  partir de la charge virale rĂ©siduelle. En utilisant un modĂšle mĂ©canistique et des techniques statistiques avancĂ©es, nous avons rĂ©ussi Ă  estimer la durĂ©e attendue de contrĂŽle rĂ©el de la charge virale ainsi que la variabilitĂ© interindividuelle associĂ©e. Contrairement Ă  l’interprĂ©tation directe de la corrĂ©lation rapportĂ©e dans la littĂ©rature, notre analyse rĂ©vĂšle que la variabilitĂ© interindividuelle du temps de contrĂŽle de la virĂ©mie n’est pas associĂ©e Ă  la charge virale rĂ©siduelle. L’approche in silico adoptĂ©e dans cette thĂšse s’inscrit dans l’effort global de ces derniĂšres annĂ©es visant Ă  minimiser le fardeau humain et le coĂ»t financier dans le dĂ©veloppement du mĂ©dicament. L’ensemble de nos rĂ©sultats de modĂ©lisation suggĂšrent qu’une meilleure pĂ©nĂ©tration dans les ganglions lymphatiques diminuerait le nombre de cas de rĂ©sistance chez les patients non-adhĂ©rents. Cependant, ils indiquent qu’une telle amĂ©lioration aurait peu d’influence sur la vitesse de dĂ©clin des charges virales. Aussi, quelle que soit l’influence de la pĂ©nĂ©tration lymphatique sur la virĂ©mie rĂ©siduelle, son amĂ©lioration n’aurait pas d’impact sur la capacitĂ© des patients Ă  contrĂŽler leurs charges virales aprĂšs avoir cessĂ© les antirĂ©troviraux.Tremendous progress was made in treating people living with HIV. Nowadays, antiretroviral therapy usually allows patients to suppress viral loads for several years, if not decades. Despite this scientific achievement, chronic drug intake is usually necessary as no treatment can completely eradicate the virus. Patients under these conditions may experience constant side effects. Further, patients’ tissues and organs may become damaged over time, as chronic immune activation is observed in most patients despite adequate drug intake and undetectable viremia. The number of treatment options can also become seriously limited over time if patients’ viruses develop and accumulate drug resistance. These issues motivate current scientific efforts. Hopefully, results from these efforts may lead to improvements in patient’s quality of life and lower the financial burden HIV imposes on society. Using the most up-to-date knowledge in the field of HIV, this thesis addresses some of the above-mentioned issues through a quantitative systems pharmacology approach supported by clinical data. Our main objective was to inform the mechanisms underlying the development of resistance and the persistence of the virus in vivo. We used available information on the components involved in the virologic response to drugs. This allowed developing models that bridge multiple scales, going from molecular, to viral, then cellular and finally to the clinical level. By assessing the ensuing models’ ability to explain and reproduce empirical data, we studied the consistency of hypotheses regarding the causality of studied phenomena. First, we developed a model allowing to better understand the extent of drug resistance development in patients undergoing antiretrovial therapy. The model combines several components, including viral kinetics, immunity, pharmacokinetics and pharmacodynamics, drug adherence as well as their interindividual variability. Predictions originating from our in silico model are consistent with clinical observations of virologic failure for the three treatments that were considered consisting of efavirenz, emtricitabine, tenofovir, darunavir and ritonavir. Through this integrative approach, we have remedied previous models that largely underestimated the risk of resistance. Our results highlight the important role played by low lymph node drug penetration in the development of resistance. The model we developed is an added forward step toward the use of in silico methods in the prediction of virologic responses in HIV patients. We then investigated the causes underlying the increasingly slow phases of viral decline observed in patients initiating antiretroviral therapy. Opinions differ as to the role played by low drug penetration in tissues in the existence of these phases, leading to a fragmentation in research efforts. To shed light on this issue, we additionally considered, in our integrative model, different rates of tissue penetration. Our results indicate that, if low drug penetration were the only cause of the decline in phases of the viral load, then the ensuing low drug exposure would put patients at a very high risk of developing drug resistance. Prediction of high risk quantitatively contradicts the observed reality (little to no resistance), leading us to conclude that low penetration is unlikely a fair explanation to the phases of viral decline. The last part of the thesis examines the ability of some patients to maintain low viral loads after interrupting prolonged antiretroviral therapy. We revisited a reported correlation between viral load values at interruption (also called residual viremia) and the duration of time patients maintained low viral loads afterwards. The interpretation of this correlation proved to be challenging since this duration includes both a time of complete control of viremia and a time during which viremia grows to a low-level threshold once control is lost. Using a mechanistic model and advanced statistical techniques, we were able to estimate the expected duration of complete viremia control along with its interindividual variability. Contrary to a direct interpretation of the correlation reported in the literature, our analysis reveals that the time of viremia control is unlikely associated with patients’ residual viremia. In summary, the in silico approach adopted in this thesis is part of an overall effort aiming to minimize patient recruitment and the financial costs involved in drug development. Our models suggest that better drug penetration in lymph nodes would likely lead to a decreased risk of drug resistance in non-adherent patients. However, our results also suggest that such an improvement would have little influence on the rate of decline of viral loads. Further, and regardless of the influence lymphatic tissue drug penetration may have on residual viremia, this improvement would not favour viremia control after antiretroviral discontinuation
    • 

    corecore