36 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Spectrum Optimisation in Wireless Communication Systems: Technology Evaluation, System Design and Practical Implementation

    Get PDF
    Two key technology enablers for next generation networks are examined in this thesis, namely Cognitive Radio (CR) and Spectrally Efficient Frequency Division Multiplexing (SEFDM). The first part proposes the use of traffic prediction in CR systems to improve the Quality of Service (QoS) for CR users. A framework is presented which allows CR users to capture a frequency slot in an idle licensed channel occupied by primary users. This is achieved by using CR to sense and select target spectrum bands combined with traffic prediction to determine the optimum channel-sensing order. The latter part of this thesis considers the design, practical implementation and performance evaluation of SEFDM. The key challenge that arises in SEFDM is the self-created interference which complicates the design of receiver architectures. Previous work has focused on the development of sophisticated detection algorithms, however, these suffer from an impractical computational complexity. Consequently, the aim of this work is two-fold; first, to reduce the complexity of existing algorithms to make them better-suited for application in the real world; second, to develop hardware prototypes to assess the feasibility of employing SEFDM in practical systems. The impact of oversampling and fixed-point effects on the performance of SEFDM is initially determined, followed by the design and implementation of linear detection techniques using Field Programmable Gate Arrays (FPGAs). The performance of these FPGA based linear receivers is evaluated in terms of throughput, resource utilisation and Bit Error Rate (BER). Finally, variants of the Sphere Decoding (SD) algorithm are investigated to ameliorate the error performance of SEFDM systems with targeted reduction in complexity. The Fixed SD (FSD) algorithm is implemented on a Digital Signal Processor (DSP) to measure its computational complexity. Modified sorting and decomposition strategies are then applied to this FSD algorithm offering trade-offs between execution speed and BER

    COGNITIVE RADIO SOLUTION FOR IEEE 802.22

    Get PDF
    Current wireless systems suffer severe radio spectrum underutilization due to a number of problematic issues, including wasteful static spectrum allocations; fixed radio functionalities and architectures; and limited cooperation between network nodes. A significant number of research efforts aim to find alternative solutions to improve spectrum utilization. Cognitive radio based on software radio technology is one such novel approach, and the impending IEEE 802.22 air interface standard is the first based on such an approach. This standard aims to provide wireless services in wireless regional area network using TV spectrum white spaces. The cognitive radio devices employed feature two fundamental capabilities, namely supporting multiple modulations and data-rates based on wireless channel conditions and sensing a wireless spectrum. Spectrum sensing is a critical functionality with high computational complexity. Although the standard does not specify a spectrum sensing method, the sensing operation has inherent timing and accuracy constraints.This work proposes a framework for developing a cognitive radio system based on a small form factor software radio platform with limited memory resources and processing capabilities. The cognitive radio systems feature adaptive behavior based on wireless channel conditions and are compliant with the IEEE 802.22 sensing constraints. The resource limitations on implementation platforms post a variety of challenges to transceiver configurability and spectrum sensing. Overcoming these fundamental features on small form factors paves the way for portable cognitive radio devices and extends the range of cognitive radio applications.Several techniques are proposed to overcome resource limitation on a small form factor software radio platform based on a hybrid processing architecture comprised of a digital signal processor and a field programmable gate array. Hardware reuse and task partitioning over a number of processing devices are among the techniques used to realize a configurable radio transceiver that supports several communication modes, including modulations and data rates. In particular, these techniques are applied to build configurable modulation architecture and a configurable synchronization. A mode-switching architecture based on circular buffers is proposed to facilitate a reliable transitioning between different communication modes.The feasibility of efficient spectrum sensing based on a compressive sampling technique called "Fast Fourier Sampling" is examined. The configuration parameters are analyzed mathematically, and performance is evaluated using computer simulations for local spectrum sensing applications. The work proposed herein features a cooperative Fast Fourier sampling scheme to extend the narrowband and wideband sensing performance of this compressive sensing technique.The précis of this dissertation establishes the foundation of efficient cognitive radio implementation on small form factor software radio of hybrid processing architecture

    Software defined radio : a system engineering view of platform architecture and market diffusion

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design & Management Program, 2002.Includes bibliographical references (p. 179-181).As complexity and ambiguity in products and customer needs increase, existing companies are being forced toward new organizational models. New products require integrating knowledge across technologies, architectures, and functions in new ways, building product platforms that can adapt to changes in markets and product design throughout the product development process. In particular, the wireless telecommunications industry is plagued by multiple incompatible dominant second-generation standards, with each with separate migration paths to future third generation functionality. The high initial investments in spectrum and infrastructure, and corresponding switching costs, call out for a technological solution that can both evolve with the rapid advances in technology and potentially operates seamlessly across multiple incompatible networks to unify a highly fragmented system. In a system engineering context, this thesis investigates the use of software define radio technology (SDR) as a potential replacement for hardware solutions to the multiple air interface standard problem. This thesis investigates the role of product platform architectures in product market diffusion by studying the selection of appropriate system and product architectures, product market diffusion, and the formation of a system dominant design. Using software defined radio (SDR) technology in the wireless telecommunications industry as a case study, the emergence of SDR as a potential replacement for multiple mobile phone standards is investigated. Compared with interim compatibility solutions that combine multiple air interfaces through hardware. SDRs are an emerging technology that promises to combine multiple air-interfaces into a single wireless phone platform though software configuration. Market and organizational disruptions are determined, and how platform architecture concepts can be used to mitigate these disruptions. The history of the wireless telecommunications industry is presented to highlight the determinants of product and standards success in the wireless industry. The transition between first-generation (1G) wireless, second-generation (2G) wireless, and the interim high data rate second-generation (2.5 G) system currently being rolled out is discussed. Geographical differences in standards acceptance and the role of government policies are discussed. The strong network effects in the industry are illustrated by the late success of GSM technology in the United States market. The mode of technological standard interaction or competition is determined through the use of the Lotka-Volterra model of technological interaction and lessons learned applied to third generation systems. Plans for third generation (3G) wireless are presented, and the various transition paths from 2G to 3G are discussed. The challenges of transitioning between technologies (technological discontinuities) are highlighted through a discussion of the installed base of legacy equipment. Software defined radio (SDR) technology is presented, and a platform architecture is developed in the context of 3G market penetration. The use of appropriate flexible SDR system architectures in light of rapidly changing technological and market innovations is discussed.by Moise N. Solomon.S.M

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    An Agent-Based Model for Secondary Use of Radio Spectrum

    Get PDF
    Wireless communications rely on access to radio spectrum. With a continuing proliferation of wireless applications and services, the spectrum resource becomes scarce. The measurement studies of spectrum usage, however, reveal that spectrum is being used sporadically in many geographical areas and times. In an attempt to promote efficiency of spectrum usage, the Federal Communications Commission has supported the use of market mechanism to allocate and assign radio spectrum. We focus on the secondary use of spectrum defined as a temporary access of existing licensed spectrum by a user who does not own a spectrum license. The secondary use of spectrum raises numerous technical, institutional, economic, and strategic issues that merit investigation. Central to the issues are the effects of transaction costs associated with the use of market mechanism and the uncertainties due to potential interference.The research objective is to identify the pre-conditions as to when and why the secondary use would emerge and in what form. We use transaction cost economics as the theoretical framework in this study. We propose a novel use of agent-based computational economics to model the development of the secondary use of spectrum. The agent-based model allows an integration of economic and technical considerations to the study of pre-conditions to the secondary use concept. The agent-based approach aims to observe the aggregate outcomes as a result of interactions among agents and understand the process that leads to the secondary use, which can then be used to create policy instruments in order to obtain the favorable outcomes of the spectrum management
    corecore