857 research outputs found

    Eyes-Off Physically Grounded Mobile Interaction

    Get PDF
    This thesis explores the possibilities, challenges and future scope for eyes-off, physically grounded mobile interaction. We argue that for interactions with digital content in physical spaces, our focus should not be constantly and solely on the device we are using, but fused with an experience of the places themselves, and the people who inhabit them. Through the design, development and evaluation of a series ofnovel prototypes we show the benefits of a more eyes-off mobile interaction style.Consequently, we are able to outline several important design recommendations for future devices in this area.The four key contributing chapters of this thesis each investigate separate elements within this design space. We begin by evaluating the need for screen-primary feedback during content discovery, showing how a more exploratory experience can be supported via a less-visual interaction style. We then demonstrate how tactilefeedback can improve the experience and the accuracy of the approach. In our novel tactile hierarchy design we add a further layer of haptic interaction, and show how people can be supported in finding and filtering content types, eyes-off. We then turn to explore interactions that shape the ways people interact with aphysical space. Our novel group and solo navigation prototypes use haptic feedbackfor a new approach to pedestrian navigation. We demonstrate how variations inthis feedback can support exploration, giving users autonomy in their navigationbehaviour, but with an underlying reassurance that they will reach the goal.Our final contributing chapter turns to consider how these advanced interactionsmight be provided for people who do not have the expensive mobile devices that areusually required. We extend an existing telephone-based information service to support remote back-of-device inputs on low-end mobiles. We conclude by establishingthe current boundaries of these techniques, and suggesting where their usage couldlead in the future

    HandSight: A Touch-Based Wearable System to Increase Information Accessibility for People with Visual Impairments

    Get PDF
    Many activities of daily living such as getting dressed, preparing food, wayfinding, or shopping rely heavily on visual information, and the inability to access that information can negatively impact the quality of life for people with vision impairments. While numerous researchers have explored solutions for assisting with visual tasks that can be performed at a distance, such as identifying landmarks for navigation or recognizing people and objects, few have attempted to provide access to nearby visual information through touch. Touch is a highly attuned means of acquiring tactile and spatial information, especially for people with vision impairments. By supporting touch-based access to information, we may help users to better understand how a surface appears (e.g., document layout, clothing patterns), thereby improving the quality of life. To address this gap in research, this dissertation explores methods to augment a visually impaired user’s sense of touch with interactive, real-time computer vision to access information about the physical world. These explorations span three application areas: reading and exploring printed documents, controlling mobile devices, and identifying colors and visual textures. At the core of each application is a system called HandSight that uses wearable cameras and other sensors to detect touch events and identify surface content beneath the user’s finger. To create HandSight, we designed and implemented the physical hardware, developed signal processing and computer vision algorithms, and designed real-time feedback that enables users to interpret visual or digital content. We involve visually impaired users throughout the design and development process, conducting several user studies to assess usability and robustness and to improve our prototype designs. The contributions of this dissertation include: (i) developing and iteratively refining HandSight, a novel wearable system to assist visually impaired users in their daily lives; (ii) evaluating HandSight across a diverse set of tasks, and identifying tradeoffs of a finger-worn approach in terms of physical design, algorithmic complexity and robustness, and usability; and (iii) identifying broader design implications for future wearable systems and for the fields of accessibility, computer vision, augmented and virtual reality, and human-computer interaction

    Tangible auditory interfaces : combining auditory displays and tangible interfaces

    Get PDF
    Bovermann T. Tangible auditory interfaces : combining auditory displays and tangible interfaces. Bielefeld (Germany): Bielefeld University; 2009.Tangible Auditory Interfaces (TAIs) investigates into the capabilities of the interconnection of Tangible User Interfaces and Auditory Displays. TAIs utilise artificial physical objects as well as soundscapes to represent digital information. The interconnection of the two fields establishes a tight coupling between information and operation that is based on the human's familiarity with the incorporated interrelations. This work gives a formal introduction to TAIs and shows their key features at hand of seven proof of concept applications

    Designing and Composing for Interdependent Collaborative Performance with Physics-Based Virtual Instruments

    Get PDF
    Interdependent collaboration is a system of live musical performance in which performers can directly manipulate each other’s musical outcomes. While most collaborative musical systems implement electronic communication channels between players that allow for parameter mappings, remote transmissions of actions and intentions, or exchanges of musical fragments, they interrupt the energy continuum between gesture and sound, breaking our cognitive representation of gesture to sound dynamics. Physics-based virtual instruments allow for acoustically and physically plausible behaviors that are related to (and can be extended beyond) our experience of the physical world. They inherently maintain and respect a representation of the gesture to sound energy continuum. This research explores the design and implementation of custom physics-based virtual instruments for realtime interdependent collaborative performance. It leverages the inherently physically plausible behaviors of physics-based models to create dynamic, nuanced, and expressive interconnections between performers. Design considerations, criteria, and frameworks are distilled from the literature in order to develop three new physics-based virtual instruments and associated compositions intended for dissemination and live performance by the electronic music and instrumental music communities. Conceptual, technical, and artistic details and challenges are described, and reflections and evaluations by the composer-designer and performers are documented

    Designing for Ballet Classes: Identifying and Mitigating Communication Challenges Between Dancers and Teachers

    Get PDF
    Dancer-teacher communication in a ballet class can be challenging: ballet is one of the most complex forms of movements, and learning happens through multi-faceted interactions with studio tools (mirror, barre, and floor) and the teacher. We conducted an interview-based qualitative study with seven ballet teachers and six dancers followed by an open-coded analysis to explore the communication challenges that arise while teaching and learning in the ballet studio. We identified key communication issues, including adapting to multi-level dancer expertise, transmitting and realigning development goals, providing personalized corrections and feedback, maintaining the state of flow, and communicating how to properly use tools in the environment. We discuss design implications for crafting technological interventions aimed at mitigating these communication challenges

    Design opportunities for wearable devices in learning to climb

    Get PDF
    In this paper, we present a field study on the learning of climbing aimed at defining the design space of wearable devices to support beginners. Three main findings have emerged from our study. First, climbing has a strong emotional impact on beginners; therefore, learning to climb requires mastering new motor patterns as well as negative emotions, such as stress and fear. Second, the feeling of danger that climbers often experience can be mitigated by trust in the climbing partner and the perception of her active presence. Finally, a big problem in climbing is the communication difficulty between the climbing partners and between climber and instructor. We conclude the paper presenting four design considerations for the design of wearable devices meant to support the learning of climbing by providing the actors involved with augmented communication. Such augmented communication should address both the physical and the emotional difficulties of this sport

    Development and evaluation of a haptic framework supporting telerehabilitation robotics and group interaction

    Get PDF
    Telerehabilitation robotics has grown remarkably in the past few years. It can provide intensive training to people with special needs remotely while facilitating therapists to observe the whole process. Telerehabilitation robotics is a promising solution supporting routine care which can help to transform face-to-face and one-on-one treatment sessions that require not only intensive human resource but are also restricted to some specialised care centres to treatments that are technology-based (less human involvement) and easy to access remotely from anywhere. However, there are some limitations such as network latency, jitter, and delay of the internet that can affect negatively user experience and quality of the treatment session. Moreover, the lack of social interaction since all treatments are performed over the internet can reduce motivation of the patients. As a result, these limitations are making it very difficult to deliver an efficient recovery plan. This thesis developed and evaluated a new framework designed to facilitate telerehabilitation robotics. The framework integrates multiple cutting-edge technologies to generate playful activities that involve group interaction with binaural audio, visual, and haptic feedback with robot interaction in a variety of environments. The research questions asked were: 1) Can activity mediated by technology motivate and influence the behaviour of users, so that they engage in the activity and sustain a good level of motivation? 2) Will working as a group enhance users’ motivation and interaction? 3) Can we transfer real life activity involving group interaction to virtual domain and deliver it reliably via the internet? There were three goals in this work: first was to compare people’s behaviours and motivations while doing the task in a group and on their own; second was to determine whether group interaction in virtual and reala environments was different from each other in terms of performance, engagement and strategy to complete the task; finally was to test out the effectiveness of the framework based on the benchmarks generated from socially assistive robotics literature. Three studies have been conducted to achieve the first goal, two with healthy participants and one with seven autistic children. The first study observed how people react in a challenging group task while the other two studies compared group and individual interactions. The results obtained from these studies showed that the group interactions were more enjoyable than individual interactions and most likely had more positive effects in terms of user behaviours. This suggests that the group interaction approach has the potential to motivate individuals to make more movements and be more active and could be applied in the future for more serious therapy. Another study has been conducted to measure group interaction’s performance in virtual and real environments and pointed out which aspect influences users’ strategy for dealing with the task. The results from this study helped to form a better understanding to predict a user’s behaviour in a collaborative task. A simulation has been run to compare the results generated from the predictor and the real data. It has shown that, with an appropriate training method, the predictor can perform very well. This thesis has demonstrated the feasibility of group interaction via the internet using robotic technology which could be beneficial for people who require social interaction (e.g. stroke patients and autistic children) in their treatments without regular visits to the clinical centres

    Conceptualizing Interactions of Augmented Reality Solutions

    Get PDF
    The rapid evolution of augmented reality has resulted in an ever-increasing number of applications in a wide range of industries and services. Despite this progress, there is still a lack of conceptual understanding of AR interactions and the entire solution space. To bridge this gap, we conceptualize AR solution interactions and provide a comprehensive taxonomy. To represent the state-of-the-art, we build upon an extensive literature review. The resulting taxonomy consists of seven dimensions that encompass 29 characteristics. We contribute to the understanding of AR interactions and, as a result, the applicability of AR solutions in businesses by developing the taxonomy. Likewise, the taxonomy can guide the design of AR solutions as it convincingly describes the solution space

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc
    • 

    corecore