139 research outputs found

    Quantifying Cognitive Efficiency of Display in Human-Machine Systems

    Get PDF
    As a side effect of fast growing informational technology, information overload becomes prevalent in the operation of many human-machine systems. Overwhelming information can degrade operational performance because it imposes large mental workload on human operators. One way to address this issue is to improve the cognitive efficiency of display. A cognitively efficient display should be more informative while demanding less mental resources so that an operator can process larger displayed information using their limited working memory and achieve better performance. In order to quantitatively evaluate this display property, a Cognitive Efficiency (CE) metric is formulated as the ratio of the measures of two dimensions: display informativeness and required mental resources (each dimension can be affected by display, human, and contextual factors). The first segment of the dissertation discusses the available measurement techniques to construct the CE metric and initially validates the CE metric with basic discrete displays. The second segment demonstrates that displays showing higher cognitive efficiency improve multitask performance. This part also identifies the version of the CE metric that is the most predictive of multitask performance. The last segment of the dissertation applies the CE metric in driving scenarios to evaluate novel speedometer displays; however, it finds that the most efficient display may not better enhance concurrent tracking performance in driving. Although the findings of dissertation show several limitations, they provide valuable insight into the complicated relationship among display, human cognition, and multitask performance in human-machine systems

    Reaching Performance in Heathy Individuals and Stroke Survivors Improves after Practice with Vibrotactile State Feedback

    Get PDF
    Stroke causes deficits of cognition, motor, and/or somatosensory functions. These deficits degrade the capability to perform activities of daily living (ADLs). Many research investigations have focused on mitigating the motor deficits of stroke through motor rehabilitation. However, somatosensory deficits are common and may contribute importantly to impairments in the control of functional arm movement. This dissertation advances the goal of promoting functional motor recovery after stroke by investigating the use of a vibrotactile feedback (VTF) body-machine interface (BMI). The VTF BMI is intended to improve control of the contralesional arm of stroke survivors by delivering supplemental limb-state feedback to the ipsilesional arm, where somatosensory feedback remains intact. To develop and utilize a VTF BMI, we first investigated how vibrotactile stimuli delivered on the arm are perceived and discriminated. We determined that stimuli are better perceived sequentially than those delivered simultaneously. Such stimuli can propagate up to 8 cm from the delivery site, so future applications should consider adequate spacing between stimulation sites. We applied these findings to create a multi-channel VTF interface to guide the arm in the absence of vision. In healthy people, we found that short-term practice, less than 2.5 hrs, allows for small improvements in the accuracy of horizontal planar reaching. Long-term practice, about 10 hrs, engages motor learning such that the accuracy and efficiency of reaching is improved and cognitive loading of VTF-guided reaching is reduced. During practice, participants adopted a movement strategy whereby BMI feedback changed in just one channel at a time. From this observation, we sought to develop a practice paradigm that might improve stroke survivors’ learning of VTF-guided reaching without vision. We investigated the effects of practice methods (whole practice vs part practice) in stroke survivors’ capability to make VTF-guided arm movements. Stroke survivors were able to improve the accuracy of VTF-guided reaching with practice, however there was no inherent differences between practice methods. In conclusion, practice on VTF-guided 2D reaching can be used by healthy people and stroke survivors. Future studies should investigate long-term practice in stroke survivors and their capability to use VTF BMIs to improve performance of unconstrained actions, including ADLs

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Designing smart garments for rehabilitation

    Get PDF

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Evaluating local skin heating as an early detection method for small-fiber neuropathy in women with breast cancer receiving paclitaxel (Taxol®)

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The purpose of this prospective, observational study was to determine if a technique used to detect early signs of small-fiber neuropathy (local skin heating) could detect signs of small-fiber taxane-induced peripheral neuropathy (TIPN) in breast cancer survivors (BCS) during the first 6 weeks of Taxol®. Aims of the study were to compare the mean size of (1) axon reflexes and (2) axon flares (both markers of small fiber nerve function) in BCS receiving Taxol® to the size of reflexes/flares in healthy female controls (HCs). A third aim was to determine whether the size of axon reflexes/flares correlated with (a) overall TIPN severity and (b) severity of individual signs/symptoms of TIPN during early Taxol®. Data for the study was collected from nine BCS and 20 HCs (N = 29). All BCS had first-time, non-metastatic cancer and received weekly or bi-weekly Taxol®. Data was collected at 3 time-points: Time 1 (day 0, before Taxol®), Time 2 (day 14), and Time 3 (day 42). Axon reflexes and flares were generated using a validated 40-minute skin heating protocol. Axon reflexes were measured using laser Doppler Flowmetry. Axon flares were measured using full-field laser perfusion imaging. TIPN was measured using the 5-item Short Form of the Total Neuropathy Score (Reduced Version). Results identified potential signs of small-fiber TIPN in BCS after 6 weeks of Taxol®. Contrary to expectation, axon reflexes were larger for BCS at Time 3 than HCs, suggesting that Taxol® may be associated with an increase in small-fiber nerve function like that seen in pre-clinical studies. Clinical signs/symptoms of TIPN were not significantly correlated with axon reflexes or axon flares at the same time point. Analyses of axon flare size were confounded by issues with the data. These results add to the growing body of evidence showing that Taxol® affects small-diameter sensory nerves and provides the first evidence in humans that changes in small-fiber nerve function may be detectable after just 6 weeks of Taxol® therapy. Studies in larger samples are needed to validate these findings

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Multimodal interaction: developing an interaction concept for a touchscreen incorporating tactile feedback

    Get PDF
    The touchscreen, as an alternative user interface for applications that normally require mice and keyboards, has become more and more commonplace, showing up on mobile devices, on vending machines, on ATMs and in the control panels of machines in industry, where conventional input devices cannot provide intuitive, rapid and accurate user interaction with the content of the display. The exponential growth in processing power on the PC, together with advances in understanding human communication channels, has had a significant effect on the design of usable, human-factored interfaces on touchscreens, and on the number and complexity of applications available on touchscreens. Although computer-driven touchscreen interfaces provide programmable and dynamic displays, the absence of the expected tactile cues on the hard and static surfaces of conventional touchscreens is challenging interface design and touchscreen usability, in particular for distracting, low-visibility environments. Current technology allows the human tactile modality to be used in touchscreens. While the visual channel converts graphics and text unidirectionally from the computer to the end user, tactile communication features a bidirectional information flow to and from the user as the user perceives and acts on the environment and the system responds to changing contextual information. Tactile sensations such as detents and pulses provide users with cues that make selecting and controlling a more intuitive process. Tactile features can compensate for deficiencies in some of the human senses, especially in tasks which carry a heavy visual or auditory burden. In this study, an interaction concept for tactile touchscreens is developed with a view to employing the key characteristics of the human sense of touch effectively and efficiently, especially in distracting environments where vision is impaired and hearing is overloaded. As a first step toward improving the usability of touchscreens through the integration of tactile effects, different mechanical solutions for producing motion in tactile touchscreens are investigated, to provide a basis for selecting suitable vibration directions when designing tactile displays. Building on these results, design know-how regarding tactile feedback patterns is further developed to enable dynamic simulation of UI controls, in order to give users a sense of perceiving real controls on a highly natural touch interface. To study the value of adding tactile properties to touchscreens, haptically enhanced UI controls are then further investigated with the aim of mapping haptic signals to different usage scenarios to perform primary and secondary tasks with touchscreens. The findings of the study are intended for consideration and discussion as a guide to further development of tactile stimuli, haptically enhanced user interfaces and touchscreen applications

    Cortical Diagnostics: Measuring Brain Health through Somatosensation

    Get PDF
    Over the past several years, a number of unique quantitative tactile based sensory testing methods were designed with the intent of obtaining objective metrics that would be sensitive to alterations in cortical information processing. The design of these tasks was based on information obtained from neurophysiological studies of the nonhuman primate (NHP) cerebral sensory cortical response to a variety of modes of natural skin stimulation, and these NHP studies typically exhibit characteristics of cortical modularity, or cortical-cortical dynamics that occur between adjacent and near-adjacent assemblies of cortical neurons. The initial goal of these studies was to demonstrate cortical correlates of perception by comparing observations of stimulus evoked activity in primary somatosensory cortex of non-human primates, and a secondary goal was to demonstrate that these measures of sensory perception were altered in a predictable fashion with neurological insult. To date, observations consistent with systemic cortical alterations have been made in individuals with neurotrauma (concussion/TBI, stroke), neurodevelopmental disorders (Autism, ADHD, Tourette's, OCD) and chronic pain (migraine, fibromyalgia, VVS, TMJD, carpal tunnel syndrome). One unifying theme of these findings is the role that cortical modularity plays in sensory information processing and that when cortical modularity is disrupted, significant quantifiable deficits in sensory information processing can be detected.Doctor of Philosoph
    • …
    corecore